
Crowd-Sourced Privacy-Preserving

Creation of Elevation Profiles

using Barometers

Master Thesis

Nicolas Inden

RWTH Aachen University, Germany

Chair of Communication and Distributed Systems

Advisors:

Dipl.-Inform. Jó Ágila Bitsch Link
Dipl.-Inform. Henrik Ziegeldorf
Prof. Dr.-Ing. Klaus Wehrle

Prof. Dr. Bernhard Rumpe

Registration date: 2014-05-09
Submission date: 2014-09-26

I hereby affirm that I composed this work independently and used no other than the
specified sources and tools and that I marked all quotes as such.

Hiermit versichere ich, dass ich die Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht
habe.

Aachen, den 26. September 2014

Abstract

This thesis proposes a system for crowd-sourced privacy-preserving data collection
with the focus on location dependent air pressure values. Currently, there is a lack of
methods to anonymously contribute to location based systems. So far, such contri-
butions rise the danger of being identified by homing or record linkage attacks. We
implement and evaluate a system that enables users to anonymously contribute air
pressure data for the creation of elevation profiles. In order to establish anonymity,
our system ensures the unlinkability and untraceability of a contributor i.e., we can
neither link from which source contributed data came from, nor can we trace the
contributed traces back to a user by their content. To realize our system we imple-
ment an Android application to gather air pressure data and to act as an input peer
to our system. Further, we use secure multi party computation in order to establish
the mentioned anonymization on contributed data before it is finally collected by a
potentially untrusted collector peer. We perform a thorough evaluation for feasibil-
ity and accuracy of air pressure based altitude differences and our anonymization
system. Ultimately, we yield the result that the barometric altitude differences have
an average error of 0.99m over all traces we collected during a one month test run.
Compared to GPS based altitude, our results outperform GPS by a factor of six.
Moreover, our secure multi party computation based anonymization system scales
linearly with the trace length ultimately yielding a performance of four to six traces
per minute on the smallest Amazon EC2 instances.

Acknowledgments

I am really happy that I found a place at ComSys to write this thesis in the best
imaginable atmosphere. It was a great time for me working at “the chair”. A big
“Thank you!” goes to all people at ComSys, especially to my supervisors Jó and
Henrik who did a great job supervising me during the development process of my
thesis. I would also like to thank Prof. Dr.-Ing. Wehrle for accepting my thesis.
Further gratitude goes to Prof. Dr. Rumpe for being second examiner. Further
thanks go to the students at ComSys who tried my Android application and hence
helped me collecting the majority of data for the system evaluations. I finally want
to thank my girlfriend Michaela and my family. Your emotional support helped me
a lot!

Contents

1 Introduction 1

2 Background 3

2.1 OpenStreetMap . 3

2.2 Barometric Altitude . 5

2.3 Android . 6

2.4 k-Anonymity . 6

2.5 Secure Multi Party Computation . 7

2.5.1 Shamir’s Secret Sharing . 8

2.5.2 Paillier Threshold Encryption 9

2.6 Bloomfilters . 9

3 Related Work 11

3.1 Privacy-Preserving Data Collection 11

3.1.1 Data Source Unlinkability . 11

3.1.2 Data Content Untraceability 13

3.2 Barometric Altitude . 14

4 Problem Statement 17

4.1 System Requirements . 18

4.2 Adversary Model . 18

5 System Design 19

5.1 Privacy-Preserving Data Collection 20

5.1.1 Data Collection and Preparation 20

5.1.2 Data Anonymization . 24

5.1.3 Data Collection . 26

5.2 Extracting Altitude Differences from Air Pressure Traces 27

6 Implementation 31

6.1 Android Application . 31

6.1.1 Application GUI . 32

6.1.2 Application Backend . 34

6.1.3 Communication between GUI and Backend 35

6.1.4 SMPC and Communication 36

6.2 Privacy Peers . 39

6.3 Collector Peer . 41

7 Security Discussion 47

8 Evaluation 51

8.1 Barometric Altitude Differences . 51

8.1.1 Feasibility . 51

8.1.2 Accuracy . 52

8.1.2.1 Self Recorded Traces Evaluation 53

8.1.2.2 Collected Traces Evaluation 55

8.2 SMPC Based Trace Anonymization 57

8.2.1 Evaluation Environment . 58

8.2.2 Input Peer Evaluation . 59

8.2.3 Privacy Peer Evaluation . 59

8.2.4 Collector Peer Evaluation . 63

8.2.5 Evaluation Summary . 63

9 Conclusion 65

9.1 Evaluation Discussion . 65

9.2 Future Work . 67

9.3 Problem Revision . 68

Bibliography 69

1
Introduction

Gathering data has always been a prominent topic, especially in combination with
the current possibilities of the internet. Services that benefit from user-contributed
data like OpenStreetMap (OSM) [1] evolved. Such crowd-sourced services have
shown to compete well with their closed counterparts as we can see looking at OSM
or Wikipedia. But what are the privacy implications involved in the contribution
in open services? No matter which service a user wants to contribute to, it is
advisable to think of the risks of being identified on the basis of contributed data.
The consequences of being identified are often not obvious, thus, it is even more
advisable to prevent identification. To stick with the example of OSM one conclusion
that one can draw is the home and work address based on traces that often connect
the same two points on the map. Then, we can conclude that this trace is probably
created by a person living at one of the endpoints. In this thesis, we propose a
system that prevents the possibility of drawing conclusions on user-reported location-
bound data and allows for a privacy-preserving contribution to OSM by means of
the concrete example of air pressure based altitude information.

There is currently a lack of possibilities for potential users to contribute to services
like OSM without being exposed to e.g., record-linkage attacks [12]. Moreover, OSM
is known to miss high precision altitude information which could enable OSM to be
used for a new class of navigation applications [8]. In this thesis, we thus propose a
system to facilitate the anonymous collection of elevation profiles while coping with
user data anonymization and reidentification prevention. Our system is focussed
on information bound to OSM nodes and thus can be extended to gather arbitrary
location based data that stays is relation to OSM nodes.

In order to prevent contributor reidentification, one possibility is to make a single
contributor indistinguishable from others such that a record-linkage attack cannot
identify one certain person but only a set of k candidates from a certain data set. A
portion of contributed data hence can not be traced back to a single person. We call a
set with this property k-anonymous [24]. However, in order to establish k-anonymity
on incoming data before it is received by a potentially untrusted collector requires a

2 1. Introduction

trusted third party (TTP), i.e. some entity that gets in possession of contributed data
from single persons and creates an anonymous set of data from it for final collection.
There are existing approaches like [5, 16, 14, 15] that propose e.g. the mix zone
where user pseudonyms are mixed when they meet at the same room and the time-
to-confusion criterion where a path cloaking algorithm chooses those traces that
can be released anonymously. However, all these approaches aim at an interactive
use of location information and suffer from the necessity of a TTP that establishes
or recognizes anonymity on the data set. In our scenario data is collected at an
arbitrary point in time such that there is no timely connection between the collected
data and the real event of measurement. We further do not need a TTP as this part is
emulated using Secure Multi Party Computation (SMPC). With SMPC we use a set
of privacy peers (PPs) that can collaboratively do the anonymization calculations
on shares of incoming data without knowing the real input. An adversary would
have to take control over more than 50% of the PPs in order to reconstruct the raw
non-anonymized data.

We apply our system to the crowd-sourced collection of air pressure based altitude
information. Previous efforts that aim at the creation of elevation profiles lack the
precision that is needed to facilitate useful altitude aided applications, or request
high amounts of money for the data. The biggest effort in this area is done by the
NASA’s Shuttle Radar Topography Mission [11] that features a a grid resolution of
30m for the USA and 90m worldwide. This set of data is not accurate enough to
e.g. find the building entrance with the least altitude difference for a wheelchair
driver. To overcome the lack of precise elevation profiles we checked for a crowd-
sourced solution based on sensors found in current smartphones. In [13] is stated
that altitude data from GPS receivers has an accuracy of ≈ 45m. It is thus no
feasible source for exact altitude information. The solution for this problem is found
in air pressure sensors built into many modern smartphones. With the values from
such sensors we are able to calculate very exact relative altitude differences between
two locations and hence are able to create elevation profiles from paths users walk
while carrying their smartphone.

In this thesis we propose a system to enable the anonymous collection of crowd-
sourced location based data on the practical example of air pressure based altitude
information. This thesis is composed of eight chapters where, after giving some
background information, the Related Work is done in the area of anonymous data
collection and proper achievement of altitude information. As a good starting point
of what we want to achieve we give an overview over the problematics to be solved
and the requirements that need to be fulfilled by our solution in the Problem State-
ment chapter. The chapter System Design firstly introduces the parts our system
is composed of and which roles they play, i.e. where and how is the data collected,
where is it processed and where is it collected. We especially explain in this chapter
how anonymity is established before the data reaches the data collector. The chap-
ter Implementation deals with the technical interaction between the components and
the used libraries. Finally, we will evaluate the performance of the anonymization
process and the quality of the gathered altitude information in comparison to exact
reference data for the region of Aachen. After a short reiteration on the evaluation
results the Conclusion points out the feasibility of our approach for anonymizing
crowd-sourced data as well as discusses how our system can be applied in other
areas of data collection for future work.

2
Background

This chapter lists and explains the used techniques and foundations of our system.
We start with the introduction of OpenStreetMap (OSM), its functionalities and
use-cases. Next up follows an introduction to the barometric altitude formula, i.e an
explanation how air pressure and altitude correlate with each other. We continue
with a short explanation of the Android Platform and how it easily delivers the
functionality to collect data among a large set of contributors. Further, we describe
the idea behind k-Anonymity and illustrate its implications on collected data with
a simple example. The last two parts of this chapter deal with Secure Multi Party
Computation (SMPC) as an instrument to anonymize a large set of input data and
Bloomfilters as datastructures that facilitate simple calculation of set-intersections
and unions under SMPC.

2.1 OpenStreetMap

OSM is a freely accessible and editable collaborative map service that grows through
user contribution. Users can utilize GPS traces to extend the map with new high-
ways, paths, buildings and further details. Especially in urban areas OSM benefits
from the amount of contributors and has developed great detail regarding streets and
buildings. Unfortunately, the available positional information is limited to latitude
and longitude for the majority of OSM nodes, elevation information is rare and if
available only coarse [8]. The current way to attach elevation information to OSM is
to use the Shuttle Radar Topography Mission (SRTM) data collected by the NASA
which has a grid resolution of 30m for the USA and 90m worldwide [8, 11].

Using our system we are able to collect altitude differences between neighboring
OSM nodes with a typical altitude error of 1.21 meters measured over 93 traces
collected in the region of Aachen, enabling OSM to be a basis for elevation data
based applications with high accuracy requirements.

Elevation information are, e.g., used in a set of new navigation based applications.
Some possibilities for such applications are:

4 2. Background

• Bicycle and hiking navigation with difficulty indicator

• Fuel saving routes in car navigation

• Easiest routes for wheelchair users

OSM is represented by a graph with multiple layers where each layer contains nodes
that have relations with each other. Relations can for instance represent parts of
streets, or buildings where a number of connected nodes mark the outer wall. More
over, each node is able to hold arbitrary information about the position it represents
such as the name of a shop or the affiliation to a parking lot.

An exemplary entry of a OSM node in OSM-XML format is depicted in Listing 2.1.

1 <node id=’25944’ visible=’true ’ \\

2 lat = ’52.50711572260516 ’ lon = ’13.374729176299503 ’ >

3 <tag k=’anchor ’ v=’stairs ’ />

4 <tag k=’direction ’ v=’both ’ />

5 <tag k=’indoor ’ v=’yes ’ />

6 </node >

Listing 2.1 OpenStreetMap node example.

The node is identified by its unique ID and has information about latitude, longi-
tude and visibility. Further information are stored using tags which hold arbitrary
key/value pairs. In this case the node is part of an indoor staircase. To create paths
or buildings from multiple nodes OSM uses relations that declare what nodes belong
to a group and how they are connected with each other.

A simple relation is depicted in Listing 2.2.

1 <way id=’23186’ visible=’true ’>

2 <nd ref=’19006’ />

3 ...

4 <nd ref=’16358’ />

5 <tag k=’direction ’ v=’both ’ />

6 <tag k=’indoor ’ v=’yes ’ />

7 <tag k=’section ’ v=’stairs ’ />

8 </way >

Listing 2.2 OpenStreetMap relation example.

Relations have IDs and list the nodes they own as members, where the members
form a path in the order of appearance in the relation. Relations can also have tags
for adding further information.

Nodes and relations are the core components of a OSM file representing a part of
the global map. We aim to complement both nodes and relations with information
about altitude differences between neighboring nodes, enabling the possibility to
compute the difference in altitude for arbitrary paths in OSM.

2.2. Barometric Altitude 5

Name Symbol Value

Sea level h0 0

Temp. gradient a 0, 0065K

Temp. at sea level T (h0) 288, 15K

Molar mass M 0, 02896 kg mol−1

Gravity constant g 9, 807ms2

Gas constant R 8, 314JK−1mol−1

Table 2.1 Constants used in barometric altitude formula, see [10]

2.2 Barometric Altitude

Although the possibility of achieving altitude information through so called Pressure
Altimeters already exists for long time, it has just recently become available to a
broad user base. More and more current smartphones are equipped with pressure
sensors hence empowering the use of these values in crowd-sourced applications.
Previously, the only way to gather altitude information with smartphones was to read
the GPS provided altitude which suffers from vertical errors of ±45m [13]. A major
improvement over the GPS altitude is delivered by the barometric altitude. The
barometric altitude is based on the fact that air pressure decreases with increasing
altitude. According to [25, 10, 18] we calculate the air pressure for a given altitude
as follows:

p(h) = p(h0) ·
(

1− a∆h

T (h0)

)Mg
Ra

(2.1)

Where p(h0) is the pressure at sea level, a is the absolute atmospheric temperature
gradient stating how much temperature changes per 100m altitude change, ∆h is
(h− h0), T (h0) is the temperature at sea level in Kelvin, M is the molar mass, g is
the gravity constant and R the gas constant. As in our setting we want to calculate
the altitude h from a given pressure p we need to solve this equation to h as follows:

h(p) = −

((
p

p(h0)

) 1
Mg
Ra − 1

)
· T (h0)

a
(2.2)

With the constant values according to Table 2.1 our equation looks as follows:

h(p) = −

((
p

1013,25mBar

) 1
5,255 − 1

)
· 288, 15K

0, 0065K
(2.3)

Using absolute heights calculated by this formula requires some caution as air pres-
sure does not only change with altitude but also due to meteorological circumstances.
There are two possible issues:

6 2. Background

1. High- and low-pressure areas have influence on air pressure by definition and
cause barometric altitude determination to yield different results in the orders
of several 10 mbar per 24h for the same spot.

2. Moving between two locations incorporates that these locations may have dif-
ferent meteorological states and thus disrupt air pressure based altitude mea-
surement.

We can see in the evaluation chapter that these issues do not have a noticeable
impact on the operation of our system.

2.3 Android

Android is Google’s operating system for the smartphone sector. It comes with wide
support for diverse smartphone models and a comfortable Software Development
Kit (SDK)1. Further, Android is an open system that facilitates free application
development for all developers. Just like the creation of maps, the collection of
altitude information requires a large set of contributors in order to gain a usable
map coverage in a feasible amount of time. We thus decided to create an Android
app that in first place empowers us to release this app to a very large user base
and in second place provides us with an easy to use development platform to access
the variety of sensors found in current smartphones. We use the smartphones GPS
module to get the users current position, and we use the barometer to collect the
current air pressure for this position. Both, GPS and barometer are easily accessible
through the APIs provided by Android.

2.4 k-Anonymity

In many cases subsets of collected data can be traced back to the person who orig-
inally contributed it. This is especially valid regarding the collection of location
based data [16] as done in our system. Even though contributed traces are not
connected with a user identity it is possible to re-identify the user by recognizing
her workplace or home [16]. Another possibility for user reidentification is shown in
[12] called record-linkage attack where the user contributed data is correlated with
publicly available information that - if a match is found - possibly reveals the user’s
identity. Hence, the contributed traces are so called quasi identifiers i.e., they do
not directly identify the user but they can in combination with further knowledge
like e.g. home or work addresses. The combination of those two information is thus
a unique identifier. A way to avoid user reidentification is to make a user indistin-
guishable from others, i.e. there should be no way to definitely trace a portion of
the final data set back to a certain user.

Figure 2.1 illustrates a 3-Anonymity scenario where three paths of three different
users are merged:

1https://developer.android.com/sdk/index.html

2.5. Secure Multi Party Computation 7

Figure 2.1 3-Anonymity: In the merged set of all paths we cannot distinguish which user went
where at crossings.

When merging multiple traces like depicted in Figure 2.1 the crossings are anonymiza-
tion points. At such points we cannot differentiate anymore between the users that
passed there. In the example we can for instance not tell if User 2 coming from the
left turns to the left, to the right or passes straight at the crossing making her in-
distinguishable from User 1 and User 3. Depending on the anonymity requirements
we can choose how many intersections are needed until the union of the traces is
released to the data collector. We speak of k − Anonymity if every dataset entry
related to a person is indistinguishable from at least k − 1 other entries from k − 1
other individuals [24].

2.5 Secure Multi Party Computation

Secure Multi Party Computation (SMPC) deals with the collaborative computation
of a known function F(x1, . . . , xn) in a secure way by a set of peers. We call the
computation secure if none of the peers gain knowledge about the private inputs
x1, . . . , xn, and the computed result is guaranteed to be correct even if some players
cheat [9].

In our system SMPC provides a secure way to compute anonymized sets of location
traces that prevent the de-anonymization of the contributors at the data collectors
site. Meaning, F is a function that takes several traces as input, checks them for
intersections and if such exist, outputs the union of these traces, otherwise nothing
is outputted.

The common participants in a SMPC scheme are input peers (IPs) and privacy peers
(PPs) where each IP i provides one input xi that is shared to all PPs using a Secret
Sharing Scheme. The computation on the inputs is done by the PPs. To realize these

8 2. Background

computations in a secure way we utilize two approaches of Secret-Sharing in SMPC,
namely Shamir’s Secret Sharing [22] and Paillier Threshold Encryption [20].

2.5.1 Shamir’s Secret Sharing

Secret-Sharing is the technique used to securely share an IP i’s private input xi
across the m PPs. It thus creates a sharing [xi] containing m shares, where [xi]j is
the j-th share of input i which is sent to PP j.

As the inputs should stay private a Secret-Sharing scheme must create shares that
for themselves give no clue of the original input. To reconstruct an input xi a
previously determined amount of shares from sharing [xi] is needed, i.e. we talk of a
(t,m) sharing if at least t+ 1 out of m PPs need to collaborate and exchange their
shares in order to be able to reconstruct the input xi.

In Shamir’s Secret Sharing a share of a (t,m) sharing is a point on a random poly-
nomial of degree t. To share xi IP i creates a random polynomial fxi

(x) ∈ Zp[X] of
degree t where xi = fxi

(0).

It then shares m random points (x, fxi
(x))x 6=0 across the PPs. Because of the chosen

degree t, we need at least t + 1 points to reconstruct the polynomial fxi
using

LaGrange interpolation such that we are able to find xi = fxi
(0). [22]

Shamir’s Secret Sharing scheme allows for basic mathematical operations on the
input such as addition and multiplication [22]. To add different inputs, the PPs just
need to add their shares, meaning they calculate:

[x+ y]i = [x]i + [y]i (2.4)

Multiplication of an input with a scalar value can be done offline without the need
of communication between the PPs as follows:

[x · s]i = [x]i · s (2.5)

Multiplying two inputs works in the same manner as adding inputs besides that
multiplying shares increases the degree of the polynomial [22]. Hence, the PPs
are required to do an extra communication round where they share their values
zi = [x]i · [y]i and calculate a share [xy]i over a polynomial of degree t.

We use Shamir’s Secret Sharing to share bloomfilters of the user-contributed traces
and discover intersections between them. Intersecting traces are merged which in-
creases the anonymity of the resulting set by one, i.e. the result set contains data
from one more individual that is indistinguishable from the others. Individuals are
indistinguishable as we cannot tell the path each individual took at the intersection
points.

2.6. Bloomfilters 9

2.5.2 Paillier Threshold Encryption

Paillier Threshold Encryption (PTE) is a secret-sharing scheme based on the discrete
logarithm problem [19]. The crypto system consists of a public key kpub that is
used by IPs to encrypt their input xi such that [xi] = Ekpub(xi) and a private key
kpriv = (kpriv1 , . . . , kprivm) where m is the number of PPs. Hence, each PP holds one
part of the private key. The creation of the key-pair needs three parameters that are
b, the length of the keys in bit, l the amount of parts the private key should have
and t the threshold that determines how many parts of the private key are needed
to reconstruct the secret. We thus speak of a threshold encryption (t,m) where t out
of m parts of the key are required to reconstruct the secret. Our system assumes the
existence of a trusted dealer that creates a key-pair and distributes the respective
parts of it to the IPs and PPs.

Shares of a PTE have the following properties [19]:

• Additive homomorphic: Secrets can be added by adding their shares.

• Self-Blinding: Shares can be re-randomized without affecting the secret itself.

The first property enables us to perform distributed calculations on the secret. More
importantly, the second property is a fundamental part of the shuffling process we
use. In this process, we randomize the node order of a traces. Therefor, each PP
applies a random permutation to the node order and re-randomizes the node’s shares
to prevent the next PP from recognizing and reordering the nodes.

2.6 Bloomfilters

As seen in the SMPC section, calculations under SMPC are based on simple primi-
tives like addition and multiplication which allow us to create any computable func-
tion upon them. In order to perform more complex set-intersection and set-union
operations on traces we use SMPC in combination with the bloomfilter (BF) rep-
resentation of a trace. A BF is a probabilistic datastructure that can hold any
hashable data. A simple (non-counting) BF is a bit-array defined by its length n
and the amount of hash functions m used to insert an element. The operations on
BFs are:

Inserting an element e into a BF f involves hashing e m times using a seed-based
hash function with m different but fixed seeds. To insert e into the bit-array we
set the bits on positions h(seed1, e) mod n, h(seed2, e) mod n, . . . , h(seedm, e)
mod n to 1.

Checking the existence of element e in the BF is done by calculating the hashes
and checking if the corresponding bits are already set to 1.

Due to the hashing BFs provide no way to reconstruct the elements that they con-
tain. Further, BFs are probabilistic datastructures, meaning the check for a certain
element may yield false-positives. With rising amount of added elements also the
number of 1s in the BF bit-array rises, leading to an overpopulated BF, where:

10 2. Background

• Adding further elements will have no significant change to the BF anymore as
most bits are already set to 1.

• There is a high probability that an element hashes to positions that have
been set to 1 by other elements, hence yielding a false-positive if checked for
existence.

It is therefor important to find feasible values for the BF length n and the number
of hashes m. This holds especially for our scenario where bloomfilters are handled
in a SMPC system where computations are expensive. A proper evaluation of the
best value for our system is given in the evaluation chapter.

3
Related Work

Privacy-preserving data collection is a well researched topic where many protocols
have been elaborated and many techniques have been developed to realize them. Our
system is composed of the following known techniques. We use secure multi party
computation (SMPC) [9, 22, 20], user anonymity by unlinkability [6] i.e, anonymizing
the source of contributed data, user anonymity by untraceability [24, 5, 16, 14, 15] i.e.,
preventing the drawing of conclusions from contributed data content, and utilization
of air pressure to yield relative altitude differences [21, 26]. In this chapter we classify
our system in the context of the mentioned techniques and talk about the advantages
and disadvantages.

3.1 Privacy-Preserving Data Collection

Privacy-Preserving data collection deals with two major concerns of contributor
anonymity. The first is contributor unlinkability which means that the data collector
is not able to determine who is the source of a certain piece of contributed data. In
this concern the data content is disregarded. The second concern deals with data
content untraceability where an untrusted entity could process the data content in
order to find hints on the identity of the recording contributor.

3.1.1 Data Source Unlinkability

Brickell et. al. elaborate on a protocol in [6] that allows for a data miner to
collect responses from a set of respondents while eliminating the connection between
response and respondent i.e., the data miner has no knowledge about which response
belongs to which respondent. To achieve unlinkability they shuffle the responses
under encryption before releasing them to the data miner. Each respondent has a
permanent primary public key pair that is registered with a certification authority,

12 3. Related Work

and a secondary public key pair that is freshly generated for each shuffle process.
The shuffling process works as follows for each respondent:

• Generate a secondary key pair.

• Sign the secondary public key with the primary key and send it to the data
miner.

• The data miner forwards the public key to the other respondents.

• The respondent encrypts his data with the miners public key and all secondary
public keys of the other respondents.

• Repeat the previous step with the other respondents primary public keys.

• Send the cipher text to the data miner.

• The data miner forwards all cipher texts to all respondents.

• Each respondent removes her layer of encryption by decrypting all cipher with
her primary private key.

• The respondents shuffle the order of cipher texts and send them back to the
data miner.

• The data miner forwards all cipher texts to all respondents.

• Each respondent verifies that her piece of encrypted data is available in the
shuffling.

• The respondents check the signatures of the shuffled pieces.

• If signatures are ok, all respondents send their secondary private key to the
data miner.

• The data miner can successfully decrypt the shuffled data.

Their protocol works in the absence of a TTP as the response shuffling is entirely
handled among the respondents. In order to prevent respondents from seeing other
respondents data they use a IND-CCA2 encryption scheme that allows for an arbi-
trary order in applying and removing encryption on responses using different keys.
The advantages of Brickell’s approach are on one side the linear message complexity
where each of n participants sends O(n) messages and on the other side the absence
of a TTP. Moreover, they show that shuffling is an appropriate way to establish un-
linkability. We implement shuffling to establish unlinkability in our system as well,
but still rely on a SMPC emulated TTP. Brickell’s approach assumes that the re-
spondents responses are not linkable by content [6] which is not given in our system.
Hence, we have to take additional measures to overcome the second major concern
of contributor anonymity i.e., data content untraceability.

3.1. Privacy-Preserving Data Collection 13

Figure 3.1 The mix-zone principle covers a user’s trace in areas with other users.

3.1.2 Data Content Untraceability

The most general approach to establish untraceability on data content is k-anonymity
as presented in [24]. We speak of k-anonymity if a contributor is indistinguishable
from k-1 other contributors in a set of data. However, establishing k-anonymity has
to be defined separately for each kind of data content.

In our scope we need to apply k-anonymity to locations and location traces. For
instance, Beresford and Stajano [5] introduce mix-zones to establish anonymity for
users moving in the same area. Their system provides location information about
users to applications that register with the system. To trigger location information,
they separate space into application areas and mix-zones where application areas are
points of interest for the registered applications and mix-zones are areas in between
where multiple users move. An example of a mix-zone is depicted in Figure 3.1.
The larger the amount of users in the mix-zone, the larger is the anonymity set as
the application can not tell which users moves on to which application area in a
mix-zone. A very similar mechanism is used in our system where intersections of
traces from multiple users correspond to mix-zones because we can not tell where
which user joins and leaves the intersection. Hence, we establish k-anonymity for k
intersecting traces from k contributors.

Hoh et. al. [16] focus on collecting live traffic information using GPS traces. They
introduce the time-to-confusion criterion that shows an adversary’s time to follow an
anonymous user sticking to a specified level of confidence. Their system is composed
of the following components:

• Location trace contributors.

• Anonymity establishing path-cloaking algorithm that decides when to release
user locations based on the time-to-confusion criterion.

• Trustworthy party to apply the path-cloaking algorithm.

Based on the time-to-confusion criterion their uncertainty-aware path-cloaking algo-
rithm chooses which user locations can be released while maintaining user anonymity.

14 3. Related Work

However, their approach is based on the existence of a trusted privacy server that
receives location updates from all users and applies the path-cloaking algorithm.
Moreover, they aim for a live recording of location-change events which makes higher
demands on anonymization as live data can be subject to the target attack where
one certain user can be reidentified by following her location updates.

In our system we anonymize complete traces such that there is no timely connection
to their recording time. We further emulate the trusted third party using SMPC
rendering a single privacy server unnecessary.

3.2 Barometric Altitude

Measuring altitude differences using air pressure is commonly used in altimeters
[2]. In recent time, barometers shrinked and are nowadays included in many smart-
phones. Parviainen et. al. [21] discuss the integration of barometers in devices for
personal navigation. Personal navigation includes but is not limited to the deter-
mination of the current floor in buildings as well as finding the correct position on
overlapping roads and highway crosses. Parviainen et. al. give a thorough eval-
uation of error sources for air pressure measurements in cars. In particular, they
state that different car blower settings have an impact on air pressure inside cars as
well as passing tunnels. Their evaluation shows differences of up to 4m in altitude
measurement depending on the blower setting. The impact in a still standing car,
and impact caused by passing tunnels is shown in Figure 3.2.

Parviainen et. al. use a reference and a mobile barometer for their measurements.
The reference barometer must be located at a known altitude over sea level. This
way, they are able to calculate absolute altitudes from the mobile barometer. To
determine the error of high distances between reference and mobile barometer they
place two barometers with 10km distance and compare their measurements. They
yield a maximal aberration of 0.1mbar between both accounting for an altitude
difference of 80cm [21]. However, we have to take into consideration that a repetition
of this experiment under different weather circumstances will yield different results.
Overall, Parviainen et. al. conclude that air pressure is suitable to calculate precise
altitudes. To make results even more accurate we need to incorporate measures to
circumvent the mentioned error sources inside cars.

Zhu et. al. [26] introduce an accurate measurement process for barometric altitude
incorporating correction of temperature drift errors and digital filtering. Their tests
yield an accurate operability of MEMS sensors in the range of -750m up to 10000m
altitude with a resolution of ≤ ±0.62m. Their measurement system has the following
features:

• Temperature drift correction

• Bias and lag compensation

• Digital filtering

3.2. Barometric Altitude 15

Figure 3.2 a) Influences on air pressure when passing tunnels while driving a car, from [21].
b) Influence on air pressure of different blower settings in the car, from [21].

Zhu et. al. state that barometer accuracy is heavily affected by temperature cross-
interference. This interference is even able to affect the linearity of a barometer. To
overcome this issue they propose to perform an offset correction of the barometer
values. Moreover, they apply a quadratic compensation (second order polynomial
approximation) based on the correction values found in the barometer sensor’s reg-
isters.

In order to compensate the barometer results during a current temperature change,
they fit the air pressure error curve during heating and cooling using the least squares
method.

Digital filtering is their last measure to improve the barometer values. They use
median and arithmetic mean of sliding windows in order to flatten noise while keeping
the original signal.

Together with the accuracy evaluation from Zhu et. al. we can conclude that
air pressure and the resulting barometric altitude are suitable to be used in our
distributed system for privacy-preserving creation of elevation profiles.

16 3. Related Work

4
Problem Statement

When looking at current map services like OSM or Google Maps, they give us a two
dimensional representation of the world. We are able to navigate from point A to
point B, but can we do it in the most efficient way for any case? Obviously, this
depends on the means of travel, i.e. driving by car, by bicycle or if we go by foot.
For instance, when planning a bike tour different routes will yield also different levels
of difficulty for the driver depending on the occurring altitude differences. The same
holds for pedestrian navigation. Unfortunately, the common mentioned map services
lack precise information about elevation changes [8] such that useful applications -
like difficulty dependent navigation for pedestrians or wheelchair users - depending
on precise elevation profiles are not realizable at the moment.

Further, investigating the lack of precise altitude information shows that public and
open sources for elevation profiles are rare. The approaches currently being used to
collect elevation profiles either suffer from a inadequate resolution as seen in SRTM
[11] or request significant amounts of money for access, e.g. communal LIDAR data
where elevation profiles are created from the reflections of a laser pointed from a
plane to the ground in the example of the region Aachen, Germany.

Fortunately, with rising distribution of air pressure sensors in current smartphones
we have an instrument to create elevation profiles based on air pressure differences
that is available to a broad community of users. These users could contribute to the
collection of air pressure based elevation profiles.

Location traces from single users allow for a reidentification of the contributing user
as shown in [12]. Hence, users contributing to such a system may worry about their
privacy e.g. if in doubt about the trustworthiness of the data collector or about third
parties intercepting personal positional data. As soon as a reidentification succeeds
for a user it is possible to extract movement profiles of her from the contributed
data which heavily violate the user privacy. Especially in current times users ask
themselves what happens with data they contribute and what conclusions can be
drawn from them about their person.

18 4. Problem Statement

Establishing anonymity on a given set of data usually requires a trusted third party
to perform the anonymizing operations on the data. This trusted party gets in
possession of data that origins from single users and thus is able to trace the data
back to these users. Unfortunately, it is difficult to find a mutually trusted party in
a system that expects the contribution of a large amount of users.

4.1 System Requirements

To solve the mentioned problems our system must thus meet the following require-
ments:

Anonymity To guarantee user privacy the system should provide a facility to
anonymize data. To anonymize data we have to consider the anonymization of
the content as well as the anonymization of the data source. The anonymized
data should not be vulnerable to de-anonymization attacks while still contain-
ing the essential data about altitude differences. In particular, we expect from
anonymized data that the original data sources are untraceable i.e., we cannot
tell who contributed the data of an anonymized set of data. Additionally, we
should avoid a single point of trust as it is complicated for a large set of loose
contributors to agree on such a mutually trusted party.

Utility After anonymity is established on the input data, the data should still
contain the information required to create elevation profiles. Moreover, the
anonymization process should not make collected data less accurate. Further,
the system must yield better results than those from data that is currently
publicly and cheaply available e.g. in comparison with SRTM data. The
accuracy should suffice to enable useful application of the data in navigation
applications for e.g., pedestrians, bicycle drivers or wheelchair users.

Scalability The system must be scalable in the number of contributors, i.e. the
collection of data should happen in distributed fashion and data handling must
be computationally feasible for large amounts of contributors.

Coverage To achieve a reasonable coverage with elevation profiles, the system
should be easily deployable i.e., including additional contributors should not
require any changes in the running system.

4.2 Adversary Model

We consider all participants to follow the honest-but-curious adversary model [17],
meaning they follow the protocol but may try to draw conclusions from the protocol
transcript in order to de-anonymize single data sources. We assume this adversary
model as the processed information would usually not legitimate the costly dedica-
tion of means to yield de-anonymized data. Thus, we need to avoid in first place
that a system participant is able to get in possession of input data that allows to be
traced back to a certain IP. Access to data from a single source alleviates the de-
anonymization process by facilitating attacks like home identification, data matching
[16] and record linkage [12].

5
System Design

In this chapter, we introduce the parts our system is composed of and explain their
function and interaction with each other. The overall design is best explained by
first considering which parties are involved in the privacy-preserving data collection
of altitude information. Those are in the order of data flow:

1. The data sources (Input peers)

2. A cryptographically emulated trusted third party (Privacy peers)

3. The data sink (Collector peer)

As shown in Figure 5.1 the desired data is gathered by many input peers (IP) that
each want to stay unlinkable and untraceable, as explained in the anonymity re-
quirements in Chapter 4, in the final data set at the collector peer (CP). To achieve
this we consider a cryptographically emulated trusted third party (TTP) to perform
anonymizing operations on the data of the IPs before it is forwarded to the CP. As a
single mutually trusted party is usually hard to agree about, the TTP is represented
by a set of privacy peers (PP) that can collaboratively perform computations on
shares of the input data without actually knowing the plain input data. After the
computations are done a majority of PPs collaborates and reconstructs the results
of the computations. This way the PPs can only see the anonymized result of the
computation which is released to the CP.

In our case, the data transported between IPs and CP contains location information
and altitude differences between neighboring OpenStreetMap (OSM) nodes. Thus,
it possibly reveals the identity of the person behind the IP [5, 14, 15]. To mitigate
the identification of single data contributors and their roaming profiles, our TTP
creates trace bunches of k intersecting traces yielding k-Anonymity (see Chapter 2)
for the data that is finally released to the CP.

The two main parts privacy-preserving data collection and extraction of altitude
information from air pressure data are explained in detail in the following sections.

20 5. System Design

Figure 5.1 Coarse system overview showing input peers, privacy peers and collector peer.

5.1 Privacy-Preserving Data Collection

To realize privacy-preserving data collection we use Secure Multi Party Computation
(SMPC). SMPC enables us to emulate a TTP that is able to anonymize the data
contributed by the users/IPs. Our protocol anonymizes contributed data in the
following two ways as required in Chapter 4:

• Unlinkability: Data is reported anonymously such that the CP cannot trace
back which data got reported by whom.

• Untraceability: Data gets anonymized such that the CP cannot draw con-
clusions from the data i.e., personal information about the users that created
the traces.

In this section, we introduce the process how we ensure unlinkability as well as
untraceability and the calculations done on each kind of peer i.e., those on IPs, PPs
and the CP.

5.1.1 Data Collection and Preparation

IPs are those players in our system that gather environmental data, preprocess it and
then forward it to the PPs. In particular, the collected environmental data is a tuple
of the current location l determined by GPS together with the current air pressure
value p in millibar (mBar) for that location. Where l is itself a tuple containing
latitude and longitude. We call tuples of locations that have been consecutively

5.1. Privacy-Preserving Data Collection 21

User 1

User 2

User 3

Figure 5.2 The left hand side shows raw traces where users meet at the same crossing but do
not necessarily intersect with each other. The right hand side shows discretized traces based
on OSM nodes where all users passing a crossroad intersect with each other and thus are
indistinguishable at this point regarding their location.

passed by the user a raw trace Traw, such that a raw trace of length n is defined as
follows

Traw = ((l1, p1), (l2, p2), . . . , (li, pi), . . . , (ln, pn)) (5.1)

where li = (lilatitude , lilongitude
). We require the traces to fulfill the following require-

ments in order to establish k-anonymity:

1. They must have determined points where they can intersect e.g., on crossroads.

2. They must be indistinguishable at the intersection point i.e., we should not be
able to determine from where a user comes (approaching the intersection) and
where she goes (leaving the intersection)

Having determined points on a discretized map enables us to let traces intersect
which would normally have no intersections according to their GPS coordinates.
This is especially useful on crossroads as shown in Figure 5.2. We discretize the
map to a graph of highways, paths and crossings extracted from the OSM database.
Within this graph intersections can only occur at OSM nodes, e.g. user traces pass-
ing the same crossing are considered to intersect with each other even though their
GPS locations may have no intersection. Figure 5.2 illustrates the benefits of a
discretized graph in comparison to raw traces. It is now computationally easy to
find intersections of two traces as we only need to check if two traces contain the

22 5. System Design

same OSM node - which is represented by an integer ID. For the sake of establish-
ing k-anonymity a discretized map hence determines the amount of nodes where
intersections can occur as well as simplifies the representation of a trace to a list
integers.

The next requirement states that traces must be indistinguishable in any manner
at their intersection points. This means that all properties of the two traces must
be identical at this point otherwise these properties could be used to distinguish
them from one another. In particular, the air pressure value is the problematic
property at intersections, i.e. it differentiates the intersecting traces. As intersecting
traces have most probably been recorded at different times the air pressure value
is likely to differ at the intersection point. An attacker could use this circumstance
to determine which user went where after the intersection, hence, the intersection
is not an anonymizing property anymore. We solve this issue by further processing
the raw trace on the input peer into a result trace Tres looking as follows:

Tres = ((n1, d1,2, n2), . . . , (ni, di,i+1, ni+1), . . . , (nm−1, dm−1,m, nm)) (5.2)

Tres holds m − 1 3-tuples where m is the number of visited OSM nodes. Each
tuple is the relation between a source node ni and a destination node ni+1 that
have been visited consecutively. The tuple also contains the altitude difference di,i+1

between these nodes. The OSM nodes in Tres can easily be found by determining the
nearest OSM node for each location from Traw and afterwards compressing multiple
consecutive occurrences of the same OSM node to one occurrence as consecutive
locations likely yield the same OSM node. These operations are entirely processed
on the user’s device such that the GPS locations never need to leave the device.

We now have a representation for the collected data that fulfills the mentioned
requirements of determined intersection points and indistinguishable intersection
points. Moreover, we determined the points on the map where altitude differences
can be meaningfully calculated i.e., between connected nodes on the OSM graph.

The final step done by the IP is to share out the traces Tres among the PPs for
further handling. We use two kinds of shares each holding different information
from Tres:

• Shamir’s Secret Sharing is used to share:

1. A bloomfilter containing all OSM node IDs of the trace

2. m bloomfilters each containing exactly one OSM node ID from the trace

• Paillier Threshold Encryption (PTE) is used to share:

1. All values from Tres as a list

Given a trace Tres as shown above our Shamir shared information T Shamir
res for PP i

looks as follows:

T Shamir
res,i = ([BF (n1, . . . , nm)]i, [BF (n1)]i, . . . , [BF (nj)]i, . . . , [BF (nm)]i) (5.3)

5.1. Privacy-Preserving Data Collection 23

We see that T Shamir
res,i contains a bloomfilter BF (n1, . . . , nm) holding all node IDs and

multiple bloomfilters BF (ni) each holding the single node ID of the ith node in the
trace. The bloomfilter representation supports the finding of intersections between
traces. Taking a bloomfilter carrying all node IDs from trace t1 we can check against
the m bloomfilters of another trace t2 and yield if one or more of t2’s node IDs is
contained in t1. If that is the case we know that t1 and t2 have most probably an
intersection. Nevertheless, we have to care of false-positives because bloomfilters are
probabilistic datastructures as stated in Chapter 2. We use Shamir’s Secret Sharing
to share the bloomfilters because checking if a bloomfilter-represented ID is contained
in another bloomfilter is computationally cheap and only involves calculating the
intersection (the bitwise AND) of the two bloomfilters, i.e. calculating the bitwise
multiplication, and counting if the number of 1s in the intersection equals the number
of hash functions. The bitwise AND used in bloomfilter intersections and the bitwise
OR used in bloomfilter unions are realized as shown in Equation 5.4 and Equation
5.5.

a ∧ b = a · b | a, b ∈ {0, 1} (5.4)

a ∨ b = a+ b− (a · b) | a, b ∈ {0, 1} (5.5)

The complete process is shown in detail in Listing 5.1.

The sharing of traces only using Shamir and bloomfilters is not sufficient for our
system because of the following reasons:

1. The values contained in a bloomfilter are not reconstructable as bloomfilters
only hold hashes of the values. However, to collect real data the CP must be
able to reconstruct the anonymized data.

2. The shared information from T Shamir
res,i serves only for the purpose of efficiently

finding intersections between traces, it does not contain collectable data. We
need a sharing scheme that allows firstly the reconstruction of plain data and
secondly a shuffling of the tuples from Tres such that the contributors of the
traces stay untraceable for the CP.

To satisfy these two requirements, we additionally share the tuples from Tres using
PTE. As stated in Chapter 2, PTE allows for a threshold encryption (t,m) where t
out of m PPs are required to reconstruct the secret. To encrypt the secret, the IP
received the PTE public key Kpub from a trusted key dealer. We create the PTE
shares T Paillier

res for PP i as follows:

T Paillier
res,i =

{([n1]i, [d1,2]i, [n2]i), . . . , ([nj]i, [dj,j+1]i, [nj+1]i), . . . , ([nm−1]i, [dm−1,m]i, [nm]i)} (5.6)

24 5. System Design

Finally, the IPs total shared information are those shown in equations 5.3 and 5.6.
In the following we refer to the total shared data of one trace as

Tshared = T Shamir
res ||T Paillier

res (5.7)

All the data is distributed among the PPs as shares and thus never leaves the user’s
device in plain. Assuming the PPs to follow the honest-but-curious adversary model
they follow the protocol and hence non of them gets in possession of plain data.
Even assuming single evil players among the PPs they are not able to reconstruct
the shared secrets as long as they do not build the majority of PPs. In particular,
regarding our system both sharing schemes are set that two out of three PPs are
required to collaborate in order to reconstruct a secret. However, these variables can
be easily modified depending on the required security and performance of the system.
In Chapter 8 we benchmark multiple different settings of the sharing schemes and
point out how performance trades off with security.

5.1.2 Data Anonymization

The PPs are responsible to anonymize the received traces before they are released.
Anonymizing location traces is done by establishing k-Anonymity [24], i.e. merging
multiple traces that have intersections with each other. Hence, the PPs first collect
the received trace shares and then find intersections between the available traces.
Those traces with intersections get merged and shuffled such that:

1. We increase the anonymity level by one for each merged trace

2. The PPs cannot distinguish anymore which tuples belong to which trace

An overview over our anonymization algorithm is shown in Listing 5.2.

A single trace t1 as received by the PPs is considered to be 1-anonymous because
there are no other traces besides itself from which the trace could be indistinguish-
able. As soon as we can merge t1 with an intersecting trace t2 they are indistin-
guishable at their intersection point, i.e. we cannot tell which trace continues where.
We then set t1 to be the merged trace t1 ∪ t2. Trace t1 is now considered to be
2-anonymous and is ready to be merged with further incoming intersecting traces.
Depending on the anonymity requirements we can choose a k such that traces are
held back at the PPs before they are released until they exhibit k-anonymity. As
soon as we merged k intersecting traces the union of these traces features at least k
intersections by construction. The resulting trace is composed of traces originated
by k contributors and as we cannot tell which contributor took which direction at
the intersection points, we call the resulting trace k-anonymous. However, choosing
k is a trade-off between data anonymity and collection speed. Choosing a high value
for k raises the risk of merged traces with less than k intersections being stuck at the
PPs because we lack further intersecting traces to meet our anonymity requirement.
Merging the traces t1 and t2 is done by appending the tuples of t2 to t1. The same
holds for the bloomfilters with the exception that the bloomfilter holding all node

5.1. Privacy-Preserving Data Collection 25

PP1

PP2PP3

apply σ2

apply σ1apply σ3

re-randomize tuples

re-randomize tuples

re-randomize tuples

Figure 5.3 Shuffling: Each PP i once applies its own random permutation σi to the tuples
and re-randomizes them by adding an encrypted value of zero to each part of the tuple. By
adding the encrypted zero we ensure that the other PPs cannot recognize the tuples and are
able to reconstruct the original order.

IDs must be the union of the bloomfilters from t1 and t2 holding their respective
nodes.

At this point however, the PPs know which portion of the merged trace belongs to
the original first trace - namely the first part - and which to the original second
trace - namely the second part. With this knowledge honest-but-curious PPs are
able to reverse the merging process and again yield 1-anonymous traces. Moreover,
the CP gets in possession of plain traces that are strung together and hence are
easily decomposable by searching for not connected consecutive tuples. We prevent
this situation by shuffling the tuples.

After the merging process, we let each PP i forward the tuples to the next PP i+ 1
while applying a random shuffling σi to them as shown in Figure 5.3. While shuffling
and forwarding we have to keep in mind that the tuples are shared using Paillier
Threshold Encryption. This means that the shares are identical for all PPs. Hence,
PP i + 1 is able to reconstruct the unshuffled order by recognizing the tuples. To
avoid PPs from recognizing tuples we re-randomize them by adding [0] to each value
of the tuples. We thus re-randomize the values of a tuple tupi as follows:

tupi = ([ni], [di,i+1], [ni+1])
re−rand

= ([ni] + [0], [di,i+1] + [0], [ni+1] + [0]) (5.8)

Doing this, the real value held by the shares stays identical, but the share itself
changes and hence cannot be recognized by the next PP in the round. The shuffling
and re-randomization process is repeated m times where m is the number of PPs.
After m repetitions the merged trace completed one round of shuffling among the
PPs. We finally synchronize the final shuffled order of tuples from PP 1 across the
remaining PPs. Now, none of the PPs is able to reverse the original order.

We have now merged two traces and randomized the order of tuples such that none of
the PPs is able to establish a connection between the current order and the original
order. Hence, PPs are not able to distinguish which tuple belongs to which trace.

26 5. System Design

Further, if the merged trace meets the anonymity requirements and gets released
to the CP, the CP only receives a set of shuffled tuples determining the altitude
differences between some neighboring OSM nodes.

Assuming some trace t1 approaches the anonymity requirement of containing k inter-
secting traces, then this trace is released to the CP. Each PP i holds the PTE shares
of t1. These shares were created by the IPs using a (t,m) threshold encryption as
explained in Chapter 2, where t out of m parts of Kpriv are needed to reconstruct
the secret. Hence, each PP performs a partial decryption of its trace-shares and
sends them to the CP. In order to prevent an adversary who intercepts all partial
decryptions on their way to the CP from reconstructing the result, all connections
between any peers are secured using the Secure Socket Layer (SSL) protocol. Only
the CP, who is in possession of an arbitrary part of Kpriv and all partial decryptions,
is able to remove the last layer of encryption from the partial encryptions. The final
reconstruction of the secret at the CP only requires the following parts of Kpriv [19]:

• t the number of required parts of Kpriv

• delta the factorial of m

• c the combine constant calculated as the inverse of 4 · delta · delta modulo
p · q where p and q are two primes randomly chosen during the key generation
process

Hence, it is not important which part of Kpriv the CP uses for reconstruction.

5.1.3 Data Collection

The CP is responsible for collecting the anonymized traces. It is considered to be an
untrusted player in the system. Thus, it must not play a role in the anonymization
process and it must only be able to reconstruct secrets of anonymized data. This
means that the traces received by the CP must already fulfill our requirement to
be k-anonymous. We have seen in the last section that both of these points apply
in our system. The CP uses its part of Kpriv to combine the partial decryptions
that it received by the PPs. Thus, it yields a shuffled list of tuples determining the
altitude differences between a set of OSM nodes. Though this list can be sorted such
that tuples with common node IDs are considered to stem from the same trace, we
cannot assume this on intersections anymore as traces are indistinguishable at their
common nodes.

While collecting traces, at some time the CP will receive altitude differences for two
neighboring nodes that are already known to have a certain difference according to
an earlier report. It is likely that the new value differs slightly from the old one.
However, in order to keep the elevation profile recent, our system treats the average
of the five most recent reports to be the current valid result.

5.2. Extracting Altitude Differences from Air Pressure Traces 27

5.2 Extracting Altitude Differences from Air Pressure
Traces

Air pressure is a commonly used metric to determine altitude in altimeters [2]. The
atmospheric pressure decreases with increasing elevation such that we can use atmo-
spheric pressure values of two locations to calculate the altitude difference between
them. We refer to Chapter 2 for a detailed explanation of the barometric altitude
formula. In this section, we concentrate on how we mitigate the influence of weather
effects on our measurements.

Atmospheric pressure is subject to permanent change conditioned by weather. Where
a good-weather area usually involves a higher air pressure, a bad-weather area in-
volves lower air-pressure. This way, measurements taken at the same spot but at a
different time yield different results. In order to make our system work properly we
need to make sure that only air pressure differences induced by changed altitude are
used in the calculation. Due to the permanent change we are not able to calculate
absolute altitudes from air pressure without a recent calibration point. However,
considering applications for pedestrian navigation it suffices to know altitude dif-
ferences between the nodes in order to rate the difficulty of the path. We use the
barometric altitude formula as shown in [10] and described in Chapter 2 to calculate
an absolute altitude, biased by the current weather conditions for two locations as
follows:

h(p) = −

((
p

1013,25mBar

) 1
5,255 − 1

)
· 288, 15K

0, 0065K
(5.9)

The constants used in this formula are explained in Chapter 2. We use this formula
for each location li where pi is the air pressure measured for this location. The alti-
tude difference between two locations l1 and l2 is now h(p2)− h(p1). Both absolute
altitudes are obviously biased by weather effects, otherwise the absolute values were
already accurate estimations for elevation. However, as we are only interested in al-
titude differences, we argue that the calculated difference between two points whose
air pressure measurements have been taken in a timely close frame of up to two min-
utes, is exact because air pressure does not change quick enough to cause noticeable
errors in short time frames as we will show in Chapter 8. Even though the weather
itself can change within two minutes, this change is preceded by a slow change in air
pressure. We will show in Chapter 8 that in a series of measurements recording the
air pressure at a fixed location over several days, even the fastest change in a window
of two minutes has no noticeable impact on the calculation of altitudes. Hence, we
can use recorded traces of air pressure to calculate exact altitude differences if the
time between two nodes does not exceed two minutes. The longer the time between
two measurements, the higher is the influence that weather takes on the result.

28 5. System Design

Data: Trace t has:
t.BFcomplete ← BF(n1, . . . , nm) where ni are the nodes from t
t.BFsingle[]← (BF (n1), . . . , BF (nm))

Input: Traces t1 and t2
Output: True, if traces have common node (intersection), else False

// Bloomfilter length
BFl ← 10;
// Amount of hashes
BFhashes ← 2;

// Check for intersections between t1 and t2:
foreach BFi in t2.BFsingle do

// Create intersection bloomfilter
for Aj and Bj being the jth bit from (BFi) and (t1.BFcomplete) do

// As the real values of the shares are either 1 or 0
// we can emulate the bitwise AND by
// multiplying the shares.
IntersectionBF[j] ← Aj ·Bj;

end
// Count the number of 1s in the intersection BF
sum ← 0;
for Bit b in IntersectionBF do

sum += b;
end
// As we only summed up the bloomfilter shares, we still
// need to reconstruct the real result.
numberOfOnes ← reconstruct(sum);
if numberOfOnes == BFhashes then

// If all 1-bits of the single bloomfilter BFi are also
// 1-bits in t2, then BFi is contained in t2 hence,
// we have an intersection.
return True;

end

end
return False;

Listing 5.1 Using bloomfilters we can check if a certain node is with high probability included
in a list of nodes.

5.2. Extracting Altitude Differences from Air Pressure Traces 29

Input: 1. Incoming traces from input peers: t1, t2, . . .
Input: 2. Anonymity requirement: k
Result: Sets of alti. difference tuples (nsrc, dsrc,dst, ndst) from k intersecting traces

traces ← [];
while True do

if new trace ti available && traces == [] then
ti.anonymity ← 1;
traces.append(ti);
continue;

else if new trace ti available then
for Trace to in traces do

if ti has intersection with to then
ti ← ti ∪ to;
ti.anonymitylevel ← ti.anonymitylevel + 1;
traces.remove(to);

end
traces.append(ti);

end

end
for Trace to with to.anonymitylevel == k do

releaseToCollector(to);
traces.remove(to);

end

end

Listing 5.2 Abstract overview over the anonymization process that creates k-anonymous traces
from single input traces.

30 5. System Design

6
Implementation

Our system is composed of multiple loosely coupled parts as shown in Figure 5.1.
The input peer (IP) is realized as an Android application that can be run on a
large set of current smartphones with integrated barometer e.g., Google’s Nexus 5.
Hence, the code for the IP is written in Java. The privacy peers (PPs) as well as
the collector peer (CP) are realized entirely in Python. To let IP, PPs and CP
communicate with each other we use the MessagePack 1 serialization library that
provides means of communication for a wide variety of languages. The remainder of
this chapter delivers a closer look at the implementation of the input peer Android
application, the privacy peers and the collector peer. We also introduce how existing
libraries for SMPC like SEPIA2 and the Paillier Threshold Encryption Toolbox 3 are
used to create shares for Shamir’s Secret Sharing and Paillier Threshold Encryption.

6.1 Android Application

The feasible operability of our system relies on a strong participation of users record-
ing traces. Hence, we have chosen to create an Android application called Elevation
Logger that enables a broad set of smartphone users to contribute. An overview of
the application is depicted in Figure 6.1. The application consists of three activities
which display the user the current status of the application, the currently measured
values as well as a list of traces. In Android, Activities are classes that display
content to the user and allow for interaction with the application. However, activ-
ities are only active if the application runs in foreground. Hence, the application
also has a part running in background, the SensorService. The SensorService is an
Android Service. Services have the ability to run in background and to be automati-
cally started after the smartphone boots. We intent to keep the application working

1http://www.msgpack.org
2http://www.sepia.ee.ethz.ch
3https://www.utdallas.edu/ mxk093120/paillier/

32 6. Implementation

Figure 6.1 Elevation Logger is composed of three activities: a) The event log b) the raw value
screen and c) the trace list. Background work is done using a service called SensorService.

with a minimum of attention required from the user, so services help us to keep the
application working over smartphone reboots.

6.1.1 Application GUI

We think that users generally want to contribute, but will quickly quit contributing
if the application demands too much attention. We focus on an application that
interferes as little as possible with the regular user experience on Android i.e., the
application only shows the measured values and uploaded traces, the user does not
need to setup anything. Further, all work is done in the background such that once
the application has started the user can forget about it. However, if no other appli-
cations using GPS are running, Android’s icon for used location services indicates
that the application is running. ElevationLogger features a simple interface shown
in Figure 6.2 that provides the user with the following information:

1. The event log, showing when traces are recorded or uploaded

2. An overview of all sensed data

3. A list of traces that already have been recorded

6.1. Android Application 33

Figure 6.2 ElevationLogger consists of the three activities Event Log - showing a list of actions
the application performs -, Raw Data - where the user can see the currently measured values
- and Traces List - showing a list of completed traces together with their upload status.

As depicted in Figure 6.1, the user can switch between these three activities in order
to read the desired information.

The Event Log Activity is a list of all events occurring during the application’s
lifecycle. Thus, it is the most important activity to inform the user about when
a trace is being recorded, when a finished trace is being uploaded and when
during one of these actions an error occurred. On start of the application the
user gets also informed about the increase in battery drain due to the use of
GPS.

The Raw Data Activity firstly gives an overview over the measured values. These
include latitude, longitude, altitude and accuracy from the GPS module which
are the raw values as received from the Android API. Further, we show the
air pressure in millibar (equals hPa) and the altitude yielded by the baromet-
ric altitude formula for this air pressure. Note that this value is affected by
weather effects and hence does not show an exact altitude. It is internally used
to calculate the altitude differences between the nodes.

The Trace List Activity lists all successfully recorded traces by the date their
recording started, their final amount of nodes and their upload status. This
activity also allows for uploading traces whose upload process has previously
failed. We further implement a function to perform an non-anonymous upload.
This function serves the purpose of a faster contribution of data as released
traces are directly sent to the CP. Hence, we give an opt-in option for users
that want to skip the anonymization process of their traces in favor of a faster
collection of altitude information. This option is reset if the application gets
restarted. Otherwise, the user needs to actively opt-out if she wants further
traces to get anonymized again.

34 6. Implementation

6.1.2 Application Backend

To provide the functionality behind the activities, we implement a class SensorSer-
vice as the application’s backend. The SensorService runs in background and is
responsible for initialization, reading and proper shutdown of the GPS module and
air pressure sensor. Moreover, for each location reading we directly use a spatialite
database query to efficiently find the closest OSM node. All in all, the SensorService
has the following main responsibilities on service startup:

• Initialize the wake lock in order to keep the CPU running for a proper air
pressure reading while the smartphone is in stand-by mode.

• Check the existence of the traces.db file that contains a serialized instance
of the TraceDB class we implemented to manage recorded traces. If the file
exists, it gets deserialized and we add new traces to the existing database.

• Initialize the Android LocationManager to use GPS as the location provider
and yield new positions on a regular basis.

• Initialize the air pressure sensor such that we get a new sensor reading every
500 milliseconds.

• Initialize the Spatialite database containing the network of OSM nodes.

Using the smartphone sensors requires CPU time but unfortunately, Android pre-
vents applications from using the CPU if the smartphone is in stand-by mode. As
the smartphone rests most of the time in this mode while users travel, we must
ensure that the applications get access to the CPU by setting a wake lock. With
the class PowerManager Android provides access to the system power management
where developers can set a partial or a full wake lock where the first keeps the CPU
running if in stand-by and the latter also keeps the display activated. Hence, we
implement a partial wake lock to keep the sensor readings working.

To manage and handle recorded traces we implement a simple datastructure called
TraceDB. The TraceDB consists of a list of LocationTraces which themselves hold
a list of LocationNodes. The TraceDB is a serializable Java object and hence can
be saved to the smartphone storage if the SensorService is stopped, and can be
deserialized if it is started. Moreover, the TraceDB provides functionality to add
new sensor readings to the currently active trace and to export traces as GPX files
for a later evaluation.

In order to get a recent GPS location the Android LocationManager needs to be set
to use the GPS module as the location provider. To process the new location the
SensorService extends the class LocationListener that provides the callback function
onLocationChanged(location) which is called as soon as a new GPS location is avail-
able. Using the GPS provider we achieve a location update rate of approximately
one location per second.

The air pressure sensor is accessed using Android’s SensorManager. We use the
SensorManager to firstly check for the existence of an air pressure sensor and secondly
for initializing the sensor to yield new readings every 500 milliseconds such that a

6.1. Android Application 35

1 SELECT osm_id , ST_Distance(geometry , MakePoint (6.4123 , 50.4123) , 0)

2 AS distance

3 FROM ’regbez -koeln -highways_nodes ’

4 WHERE ROWID IN

5 (SELECT ROWID FROM SpatialIndex

6 WHERE f_table_name=’regbez -koeln -highways_nodes ’

7 AND search_frame=BuildCircleMbr (6.4123 , 50.4123 , 0.001))

8 AND distance < 30 ORDER BY distance LIMIT 5;

Listing 6.1 A spatialite query to yield a list of OSM nodes being nearer than 30 meters to the
given GPS coordinates sorted by ascending distance.

recent reading is available for each new GPS location. Similar to the location, the
sensor reading is received by a callback function onSensorChanged(SensorEvent)
which is provided by the Android SensorEventListener.

While receiving new GPS locations we are also interested in the nearest OSM node
for each of the GPS readings. Hence, the application contains a Spatialite4 database
of all OSM nodes dedicated to paths and streets. To keep the application at a
handy size we restrict this database to the Regierungsbezirk Koeln in Nordrhein-
Westfahlen, Germany. The uncompressed OSM network of streets and paths of
this area requires approximately 115MB storage on the device. Spatialite supports
us with the advantage that we can generate a SpatialIndex of all OSM nodes and
relation. The SpatialIndex is a R-Tree datastructure that allows for very efficient
searches for specific regions [3]. For instance, we can efficiently search for all OSM
nodes in a given radius around some given GPS coordinates. We show an exemplary
query for such a search in Listing 6.1. The result of this query is a list of OSM
nodes around the given GPS coordinates sorted by ascending distance. We take the
nearest OSM node and save it together with the GPS location and air pressure as
next entry of our currently recorded trace. Finally, all traces that have not been
uploaded yet, are uploaded on an hourly basis. We summarize the SensorService
behavior as a flowchart in Figure 6.3.

6.1.3 Communication between GUI and Backend

In order to show the user which data is currently measured and recorded we need
to establish an event-based connection between the SensorService and the activities.
Such a connection serves the purpose of delivering sensor readings or information
that is not directly accessible from the activity classes to the current activity in the
moment they occur. We can thus directly show these information in the application
GUI. The key information transported between the SensorService and the activities
are:

• Current sensor readings

• A list of previously recorded traces

4https://www.gaia-gis.it/fossil/libspatialite/index

36 6. Implementation

1 double sensorReading = 42.0;

2

3 Intent intentA = new Intent ("sensor -data ");

4 intentA.putExtra (" sensorsAnswer", sensorReading);

5

6 LocalBroadcastManager.getInstance(getBaseContext ()). sendBroadcast(intentA);

Listing 6.2 Using Intents and the LocalBroadcastManager to broadcast data within an appli-
cation.

1 BroadcastReceiver recv = new SensorDataReceiver ();

2

3 onCreate () {

4 ...

5 LocalBroadcastManager.getInstance(this). registerReceiver(recv);

6 ...

7 }

8

9 class SensorDataReceiver extends BroadcastReceiver {

10 onReceive(Context con , Intent intentA) {

11 double sensorReading = intentA.getDoubleExtra (" sensorsAnswer ");

12 ...

13 }

14 }

Listing 6.3 Using Intents and the LocalBroadcastManager to receive broadcasted data within
an application.

Both of these information are only accessible by the SensorService class so we need
to be able to submit them to the GUI. Fortunately, Android provides tools em-
powering us to send Intents via the LocalBroadcastManager within our application.
Intents are empty frames that can be filled with information to be delivered or with
actions to be performed. When sending data within our application we create an
Intent intentA giving it a name e.g. sensor-data and fill the data into it by using
intentA.putExtra("varname", variable). The next step is to broadcast intentA
using the LocalBroadcastManager class. The complete sending process is shown in
Listing 6.2.

For the activity, or any other arbitrary class, to be able to receive the informa-
tion from intentA, this class needs to implement a subclass that extends the An-
droid provided BroadcastReceiver. This way, the subclass implements the onRe-

ceive(Context,Intent) method. On activity start we register our BroadcastRe-
ceiver with the LocalBroadcastManager with an IntentFilter that must have the
same name as the Intents we want to receive. As soon as an Intent with this name is
sent within the application, our onReceive(Context,Intent) is invoked and han-
dles the received data. An exemplary receiving process is shown in Listing 6.3.

6.1.4 SMPC and Communication

Our Android application ElevationLogger serves as an input peer in a Secure Multi
Party Computation system that anonymizes the recorded traces and finally releases
them to a potentially untrusted data collector. As shown in the previous subsections

6.1. Android Application 37

we collect recorded traces in a local trace database. On an hourly basis we check if
new traces have been recorded and then attempt to create shares from these traces
as explained in Chapter 5 in order to distribute the shares among the privacy peers.

Creating shares from traces is computationally expensive and thus should be done in
background. Otherwise, the GUI would freeze for the time of the computations. The
duration of computation depends on the trace length, the chosen bloomfilter size,
the key size for Paillier’s threshold encryption and of course the processor speed. On
average, we expect a duration around 5 seconds. Hence, we implement an AsyncTask
class called UploadTrace. Running UploadTrace’s run(traceID) method is always
performed in background using the smartphones multithreading capabilities. When
invoking an instance of UploadTrace it gets supplied with the ID of the trace that
should be shared and uploaded. The responsibilities of our UploadTrace class are:

• Get a minimal copy of the trace determined by the supplied trace ID

• Create a list of (ni, di,i+1, ni+1) tuples from the trace

• Receive the public key used for Paillier’s threshold encryption

• Encrypt the created tuples with the public key

• Create bloomfilters for each node in the trace, plus one bloomfilter containing
all nodes

• Create Shamir shares of the bloomfilters

• Release all shares together with a random trace ID among the privacy peers

The traces as stored in the applications trace database contain more information
than just those that we want to release to the privacy peers. They contain all
recorded GPS locations and air pressure values. Moreover, they have GPS and
pressure information for locations between the real OSM nodes. Hence, we create
a list of locations that contains only those which are the nearest to the next OSM
node. This way, we get to know which air pressure measurements have been taken
nearest to which OSM node and can attach them. The result is a list of OSM nodes
with their respective air pressure measurements. We call this list a minimal trace.

As shown in Chapter 5 we need to process the air pressure values in order to cre-
ate a list of tuples stating the altitude difference between consecutive OSM nodes.
Therefor, we use the barometric altitude formula as described in Chapter 2. Alti-
tude differences are usually not integer but double values which cannot be handled
by PTE as it is based on the discrete logarithm problem where encryption and de-
cryption is only applicable to positive integers. Hence, we scale them by a factor
of 10000 in order to maintain four decimal places which is enough regarding the
Nexus 5 barometer accuracy of 0.12mBar which translates to roughly 90cm. We
further have to take into consideration that altitude differences can be negative in
value. However, PTE does not support encrypting negative values. Hence, we cir-
cumvent this issue by parting the positive range of 0 ... MAX_LONG into the range
0 ... MAX_LONG/2 for positive values and (MAX_LONG/2)+1 ... MAX_LONG for

38 6. Implementation

negative values. For instance, we map the value −1 to 4611686018427387904 with
MAX LONG = 9223372036854775807.

In order to create the PTE shares of our altitude difference tuples we use the PTE
toolbox5. The toolbox is a PTE Java library, hence, it is suitable for use in Android
applications. It provides simple means to handle the required public key with the
PaillierKey class. Once the public key is received from the key dealer, we can ini-
tialize an PaillierKey instance and use it to create an instance of PaillierThreshold.
The latter is used to encrypt data using the public key. This way, we encrypt every
node and every altitude difference using PTE. The resulting encrypted data is of
class BigInteger which is used to represent integers larger than supported by native
types. Unfortunately, the MsgPack library used to send messages over the network
does not support numbers of this size. Thus, we convert the numbers into strings
before sending. We consider the optimization of sending numbers over the network
with less overhead as future work.

For the creation of BFs we implement an own class MMH3BloomFilter that allows
for adding elements to a BF and looking up elements if contained in a BF. A BF is an
array of bits where adding an element to the BF sets those bits to 1 that are at the
position hash(seed, elem) mod m where m is the BF length. Each added element
is hashed hcount times with different seeds such that after adding one element at most
hcount bits are set to 1. As the hash function we use a public domain implementation
of MurmurHash36. Finally, we create one BF for each node in our trace plus one BF
containing all nodes. Adding and looking up elements is done as shown in Listing
6.4.

1 int bfSize = 40; // Bloomfilter will have 40 bits

2 int bfHashes = 7; // Elements will be hashes with 7 different seeds

3 // setting at most 7 different bits in the BF

4

5 String elem = "Add me!";

6

7 MMH3BloomFilter bf1 = new BloomFilter(bfSize ,bfHashes);

8 bf1.add(elem);

9

10 boolean contains;

11 contains = bf1.lookup ("Add me!"); // True!!

12 contains = bf1.lookup ("42"); // False!!

Listing 6.4 Adding and looking up an element to and from a BF.

Creating the Shamir shares of the BFs is done using the SEPIA library as presented
in [7]. SEPIA facilitates the simple creation of shares from integer inputs. Settings
that need to be set before are the fieldsize i.e., the residue class ring used in Shamir’s
calculations, the degree t of polynomials, and the number of privacy peers. Creating
Shamir shares for an array of values is shown in 6.5. We do this for all BFs of the
current trace.

At this point we created PTE shares for the altitude difference tuples and Shamir
shares for the BFs. These shares are ready to be sent to the privacy peers. Using

5https://www.utdallas.edu/ mxk093120/paillier/
6http://github.com/yonik/java util

6.2. Privacy Peers 39

1 long[] inputs = {0,1,0,0,1,1,0,0,1,0}; // BF of size 10

2 int degree = 1; // Requires 2 PPs for reconstruction

3 int peers = 3; // Number of supporting points of the polynomial

4 long fieldsize = 9223372036854775783l; // Largest prime

5 // smaller than MAX_LONG

6

7 ShamirSharing shamir = new ShamirSharing(peers);

8 shamir.init (); // Initialize sharing matrix

9 shamir.setRandomAlgorithm (" SHA1PRNG ");

10 shamir.setFieldSize(fieldSize);

11 shamir.setDegreeT(deg);

12

13 long [][] res = shamir.generateShares(inputs);

Listing 6.5 Creating Shamir shares from a given array of inputs.

MessagePack we can serialize the shares in the Android application to a byte-stream
ready to be sent over the network. The counterpart at the privacy peers then
deserializes the byte-stream to a Python object. A Java HashMap is thus deserialized
to a Python dictionary. Finally, we use TCP Socket connections to release the shares
to the privacy peers. As stated in Chapter 5 we need to secure the connections
between all participating peers to prevent adversaries from collecting shares and
ultimately from reconstructing secrets. This is considered future work but can be
easily achieved by using TLS for all connections.

6.2 Privacy Peers

The PPs are responsible to anonymize the data they receive from the IPs. Hence,
they should provide functionality to process shares from Shamir’s Secret Sharing and
from Paillier Threshold Encryption. We implemented the privacy peers in Python for
a fast prototyping progress. While we use an own Python implementation of PTE,
the library handling Shamir shares stems from VIFF, the Virtual Ideal Functionality
Framework7. We depict the PP behavior in the flowchart in Figure 6.4. In this
section, talking about a trace always refers to the shares of this trace located at the
PPs.

On startup the PPs request their respective part of the PTE private key from the key
dealer. In our prototype we decide which part each PP gets by their ID. However,
as IDs can easily be spoofed, a productive implementation would have to use peer
authentication at this place. As an alternative, the key generation for PTE could be
done in distributed fashion using SMPC by the PPs. This would render a dedicated
dealer unnecessary.

In order to communicate with each other, the PPs establish a TCP connection to
one another which lasts until one PP is shut down or the connection breaks. As
soon as all connections are established, the PPs start listening on an extra port for
incoming trace shares.

In the PPs main loop we regularly check if new trace shares have been received. As-
sume that IP1 releases a trace t1 to the PPs where the shares are [t1]PP1 , [t1]PP2 , [t1]PP3

7http://viff.dk

40 6. Implementation

1 // a) --- Direct intersection of plain BFs ---

2 bf1 = [0,1,1,0,0,1,1,1,0,1]

3 bf2 = [1,1,0,1,0,0,1,1,0,0]

4 intersectionBF = [bit1 & bit2 for bit1 ,bit2 in zip(bf1 ,bf2)]

5 // intersectionBF == [0,1,0,0,0,0,1,1,0,0]

6

7 // b) --- Intersection of BF shares ---

8 bf1 = [...] // List contains shares of bf1 ’s bits

9 bf2 = [...] // List contains shares of bf2 ’s bits

10 // Logical AND gets emulated by multiplication of shares

11 // where * is the multiplication of Shamir shares

12 intersectionBF = [bit1 * bit2 for bit1 ,bit2 in zip(bf1 ,bf2)]

Listing 6.6 Calculating the intersection of a) two plain BFs and b) two shared BFs

for a set of three PPs. Network delay can cause these shares to not arrive simul-
taneously at all PPs such that PP1 receives [t1]PP1 but PP2 and PP3 still have no
knowledge of t1 because they did not receive [t1]PP2 and [t1]PP3 yet. To solve this
issue the PP that receives its shares initializes a synchronization round by requesting
the IDs of the traces that the other PPs have recently received. The next processed
trace is then the commonly available trace with the lowest ID. If the PPs have not
yet saved any other traces the new trace is saved and the PPs determine the next
trace to be processed.

If the PPs agreed on the next trace tnew and they have a set of known traces
told1 , . . . , told2 we create the intersection BFs for each known trace i.e., we take
BF (n1, . . . , nm|n ∈ tnew) and BF (n1, . . . , nm|n ∈ toldi) and calculate their inter-
section BFint for each known trace. In Listing 6.6 we show how the intersection BF
of two BFs is calculated in Python. Under SMPC the BF bits are Shamir shares
hence we emulate the logical AND between two bits by the distributed multiplica-
tion of the shares as stated in Chapter 5. We can now check each BF of the single
nodes in tnew against BFint if they are contained. A node n is probably contained in
both traces if BF (n) is contained in BFint. Refer to Chapter 2 for an explanation
of the probabilistic properties of bloomfilters. Listing 6.7 shows how we check this
in Python. We first intersect BF (n) with BFint followed by counting the 1s in the
intersection. If the number of 1s equals the amount of hashes used to add node n
to the BF, node n is most probably contained in both traces. However, we have to
keep in mind that we can yield false-positives as stated in Chapter 2.

If the intersection check yields a positive result for a node stating it to be contained in
both traces tnew and toldi , these traces get merged. We merge two traces by creating
a new trace containing both traces’ altitude difference tuples and single-node BFs
and a union of their complete BFs. We create the union of two BFs by calculating
the bitwise OR. Under SMPC regarding Shamir shares we emulate the bitwise OR
using Equation 5.5 as stated in Chapter 5. The complete calculation is shown in
Listing 6.8. Remember, the calculation is performed on Shamir shares, thus, we
have to use the Shamir specific multiplication as stated in Chapter 2.

Once merged, the PPs still know which part of the trace belongs to which original
trace. Thus, if sent with a non-anonymous IP address, the PPs could still identify a
contributor in a merged trace. To circumvent this issue we shuffle the PTE tuples
holding the altitude differences between the nodes. The shuffling process is described

6.3. Collector Peer 41

1 bfHashes = 2 // Number of hashes used for adding elements to BF

2

3 // a) --- Direct check using plain BFs ---

4 bfN = [0,0,1,0,0,0,1,0,0,0] // BF of single node n

5 bfINT = [1,0,1,1,0,0,1,1,0,0] // BF of all common nodes

6 intersectionBF = [bit1 & bit2 for bit1 ,bit2 in zip(bf1 ,bf2)]

7 // intersectionBF == [0,0,1,0,0,0,1,0,0,0]

8

9 // If number of 1s in intersectionBF equals bfHashes

10 if sum(intersectionBF) == bfHashes:

11 return True // Node n is contained in both traces!

12

13 // b) --- Check using BF shares ---

14 bfN = [...] // List contains shares of bfN ’s bits

15 bfINT = [...] // List contains shares of bfINT ’s bits

16 // Logical AND gets emulated by multiplication of shares

17 // where * is the multiplication of Shamir shares

18 intersectionBF = [bit1 * bit2 for bit1 ,bit2 in zip(bf1 ,bf2)]

19

20 // If number of 1s in intersectionBF equals bfHashes

21 if reconstruct(sum(intersectionBF)) == bfHashes:

22 return True // Node n is contained in both traces!

Listing 6.7 Checking if node n is contained in tnew and toldi using BFs.

1 bf1 = [...] // List contains shares of bf1 ’s bits

2 bf2 = [...] // List contains shares of bf2 ’s bits

3 // A or B -> A + B - A * B

4 unionBF = [(bit1 + bit2 - bit1 * bit2) for bit1 ,bit2 in zip(bf1 ,bf2)]

Listing 6.8 Building the union over two shared BFs.

in Chapter 5 and is implemented straight forward. However, shuffling incorporates a
re-randomization by adding [0] to each shuffled value. For performance optimization
we use the idle time between new incoming traces to pre-compute PTE encrypted
zeros [0] for direct availability. Finally, the merged and shuffled trace is added to
the list of known traces where the original traces are removed.

As a last step we check the list of known traces for candidates fulfilling the anonymity
requirement k. For each candidate each PP decrypts the altitude difference tuples
with its part of the PTE private key and releases them to the CP which is now able
to reconstruct the shuffled and k-anonymous trace.

6.3 Collector Peer

The CP is implemented in Python such that it can use the same libraries for network
connections and share handling as the PPs. Its responsibilities are the reception and
storage of anonymized traces. It therefor listens for incoming connections from the
PPs releasing traces. The CP receives partial decryptions of trace tuples from each
PP. Hence, we need to secure the connections from the PPs such that an adversary
can not intercept the partial decryptions. After full reception of a trace the CP
reconstructs the tuples and stores them for later processing. We choose the JSON

42 6. Implementation

format for storing traces as it is a universally processable and readable format. The
complete CP behavior is shown in Figure 6.5. We consider the CP to only reconstruct
and store the anonymized traces. Further handling for differing altitude information
between the same pairs of nodes is easily implementable and together with releasing
the information to OSM considered as future work.

6.3. Collector Peer 43

Start

Initialize
sensors
and DB

New
location

available?

Combine
location

with most
recent air
pressure
measure-

ment

Wait
for new
location

Loc.
accuracy
< 14m?

Are we
recording
a trace?

Loc.
accuracy
< 18m?

Terminate
and save

trace

Start a
new trace

Get
nearest

OSM node
for current

location

Add tuple
(location,
pressure,
osm) to

trace

Serialize
TraceDB
to storage

yes

no

yes

no

yes

no

yes

no

Figure 6.3 Flowchart showing how SensorService behaves and under which conditions traces
are recorded.

44 6. Implementation

Start

Get private
key from

dealer

Connect to
other PPs

New
traces

available?

Wait for
new trace

Agree
on next
handled

trace

Known
traces in

DB?

Create in-
tersection

BFs

Check for
trace in-

tersection

Intersection
found?

Merge in-
tersecting

traces

Shuffle
tuples

Release
trace if k-

anonymous

Save trace
shares

yesno

yes

no

yes

no

Figure 6.4 Flowchart showing the privacy peer behavior.

6.3. Collector Peer 45

Start
Get

PTE key

Received
new

shares?
Save shares

Reconstruct
complete

traces

Store
recon-

structed
traces

Wait for
more
shares

yes

no

Figure 6.5 Flowchart showing the collector peer behavior.

46 6. Implementation

7
Security Discussion

As stated in Chapter 4, we make demands on the user-privacy and security. We
ultimately want to achieve that a contributor can neither be identified as a data
source nor as subject to a recorded trace. To fulfill this demand, we presented an
anonymization process based on a TTP emulated by SMPC. In this chapter, we
explain the different parameters of SMPC and their influence on system security
together with the chosen adversary model. Moreover, we explain user unlinkablity
and show that our system fulfills this requirement. We further discuss home iden-
tification attacks on anonymized traces and how they can be mitigated. We finally
note that our system meets the requirements on anonymity as stated in Chapter 4.

When regarding possible attacks on our system we have to choose between several
adversarial models. Especially, we distinguish between the malicious adversary and
the honest-but-curious adversary. Where the malicious adversary may actively mis-
behave by diverging from the system protocol, the honest-but-curious adversary must
comply with the protocol but tries to gain as many information from the protocol
transcript [17]. In our system, we consider the adversaries to be honest-but-curious.
The processed data in our system has no monetary or life-harming influence such
that we expect that an adversary would not incur the effort of actively disturbing
our system.

We distinguish between two types of user reidentification as stated in our anonymity
requirements in Chapter 4:

1. Reidentification by data source linkability.

2. Reidentification by data content traceability.

When a contributor releases the shares of a trace to the PPs the PPs know that these
shares belong to the same trace and thus to the same contributor. Hence, we need
to eliminate the link between user and shares before they get reconstructed at the
CP. We do this by shuffling and re-randomizing the shares at the PPs. For instance,

48 7. Security Discussion

Figure 7.1 Left side: k=3 anonymous trace with transitive intersections. Right side: k=3
anonymous trace with single intersection.

directly after merging two traces t1 and t2 into t1∪2 we still know which shares belong
to which original trace as t1∪2 essentially is a concatenation of t1 and t2. Thus, the
anonymity level of the content increased reasoned by the intersection of t1 and t2 but
we can still link the single shares to a source. We eliminate this link by shuffling the
order and re-randomizing by adding an encrypted zero to the PTE shares at each
PP. A visualization is shown in Figure 5.3. Re-randomization prevents the next PP
in the round from recognizing the shares and possibly reordering the shares. After
one complete round none of the PPs can link the shares to a source anymore.

The CP receives all its messages from the PPs and hence can not link the traces
to the original source. However, the CP eventually reconstructs the content of the
trace and is assumed to draw conclusions about the persons who created the trace.
These conclusions hence are solely based on the content of the trace. We prevent
the application of home identification, data matching [16] or record linkage attacks
[12] by merging traces at the PPs until they fulfill an anonymity level k. We call
a trace k-anonymous if one contributor of the trace is indistinguishable from k-1
other contributors of the same trace. Indistinguishability is given if multiple traces
intersect and we are not able to tell where the contributors entered and left the
intersections. The intersections created by our system are categorized in transitive
intersections and single intersections. As depicted in Figure 7.1, transitive intersec-
tions let multiple traces intersect in different points where single intersections are
intersections of traces in the same point. Undoubtedly, choosing a higher k improves
the contributor anonymity but it is also a trade-off to data collection speed as traces
that do not reach k-anonymity will never be released to the CP.

49

Although exhibiting k-anonymity, at least parts of traces are attackable by home
identification. This first or last part of a trace before and after an intersection is a
potential candidate for home identification. Though we can not draw conclusions
about the further course after the intersection, we can possibly identify the person
departing or approaching her home. To circumvent the identification at trace end-
points we suggest the use of geofencing when recording traces. Using geofencing the
user is able to white- or blacklist areas such as her home and vicinity for trace record-
ing ultimately preventing home identification attacks. However, the implementation
is considered future work.

Our system uses SMPC to emulate a TTP for anonymity establishing calculations.
The TTP can consist of an arbitrary number of PPs where the PP amount is a
trade-off between computational effort and security. Most importantly, a higher
amount of PPs makes it harder for an adversary to gain control over a majority of
PPs which would empower him to jam the system or reconstruct non-anonymous
traces. On the other side computational effort to perform calculations under SMPC
increases with rising number of PPs. For a detailed evaluation of this point we refer
to Chapter 8.

Both, using PTE and Shamir’s secret sharing involves the decision for a suitable
threshold value sharethres. This threshold determines for PTE how many parts of
the private key are needed in order to decrypt the secret. As each PP holds one part
of the private key, the threshold also determines how many PPs have to collaborate to
decrypt the secret. Similarly, we set the threshold sharethres when creating Shamir
shares such that these shares are based on polynomials of degree sharethres − 1.
Hence, we need sharethres collaborating PPs to reconstruct a Shamir share. An
adversary would have to gain control over at least sharethres PPs which then are
able to reconstruct the shared PTE or Shamir secret. At this point, the system
operator must decide the trade-off between security (more PPs) and computational
effort (less PPs). We show how computational effort behaves with rising number of
PPs in Chapter 8.

Altitude difference tuples are shares using PTE where PTE allows us to choose
between different key sizes. Like Diffie-Hellman, PTE bases on the discrete logarithm
problem [19]. As for other public key algorithms like RSA key sizes of 1024 bits may
suffice for the near future but are likely to get insufficient [23]. Hence, we recommend
the use of primes of length 2048 bits or more for PTE.

Over the complete process of data collection we can attack the contributor identity
through data source linkability and data content traceability. We have shown that
using shuffling and PTE for trace tuples eliminates a linkability to the data source
successfully. Moreover, we have shown that k-anonymity is a suitable measure to
circumvent contributor traceability from the data content.

50 7. Security Discussion

8
Evaluation

In this chapter we firstly evaluate the accuracy of collected barometric altitude dif-
ferences in comparison to a reference map and secondly we evaluate the performance
of our SMPC based trace anonymization system.

8.1 Barometric Altitude Differences

All self recorded measurements in this section are captured using a Nexus 5 smart-
phone containing the BMP280 [4] piezo-based air pressure sensor. According to
its datasheet it features a typical relative pressure accuracy of 0.12mBar while the
data resolution is 0.01mBar. However, in our evaluation we will see that accuracy
is usually better in comparison to 0.12mBar.

8.1.1 Feasibility

In Chapter 2 we stated that barometric altitude is subject to weather effects like
high- and low-pressure areas. We begin this section by showing that these weather
effects have no significant influence on our measurements as the speed of weather
based air pressure changes is not high enough to influence the measurements between
neighboring OSM nodes.

To show how significant weather impacts our system, we consider the average dis-
tance to neighboring nodes in the OSM network of Regierungsbezirk Köln, Germany,
and an average traveling speed for pedestrians to calculate the average time needed
to travel from one node to the next. Then, we show that air pressure changes within
this time frame have a magnitude that is below the accuracy of the barometer used
in our test device. To be exact, the average distance to neighboring nodes in the
street and path network used in this thesis is ≈ 125m. Where - given an average
walking speed of 4km/h - a user needs on average 112, 5s from one node to the

52 8. Evaluation

0 500 1000 1500 2000 2500 3000 3500
Seconds (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
ir

 p
re

ss
u
re

 (
m

B
a
r)

+9.895e2 Air pressure

0 5 10 15 20 25 30
Windows of size 120s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
h
a
n
g
e
 o

f
p
re

ss
u
re

 i
n
 f

ra
m

e
 (

m
B

a
r)

Figure 8.1 On the top we see the real air pressure values measured within the hour of fastest
change on that day. On the bottom we depict the change of air pressure for two-minute frames
from that hour i.e., the pressure difference between the first and the last measurement in that
frame.

next. Hence, we are interested in how much weather affects the air pressure in time
frames around 112, 5s. However, we have to note that neighboring nodes with higher
distance such as highway nodes are usually passed with higher speed. Hence, the
practical time between OSM nodes is probably lower than 112, 5s.

Figure 8.1 shows an one hour extract from a twelve hour measurement of air pres-
sure changes on a fixed location. This particular extract was chosen because it
contains the fastest change in air pressure within the twelve hour measurement in-
cluding the rise of a bad weather front. We can read from the graph that during
the fastest change within the twelve hour measurement the pressure changes by
0.28mbar within that timeframe where the used barometer features a typical rela-
tive accuracy of 0.12mBar according to [4]. Further, we note an average change over
all time frames of 0.06mBar i.e., the air pressure difference between the first and
the last measurement in a two minute frame is on average 0.06mBar in this case.
Hence, we assume that meteorological influences do not have a relevant influence
while moving between OSM nodes.

8.1.2 Accuracy

The product of our data collection system is a set of air pressure based altitude
differences between neighboring OSM nodes. In this section we compare these traces
with a reference map of the region of Aachen, Germany. The reference map is
provided by the local land-registry and features an average grid resolution of 20cm
by 20cm and an altitude resolution of 10cm. The reference data was collected using
LiDAR technology i.e., by laser scanning the ground from an air plane. We have two

8.1. Barometric Altitude Differences 53

0 100 200 300 400 500
Trace points

35

30

25

20

15

10

5

0

5

R
e
la

ti
v
e
 A

lt
it

u
d
e
 (

m
)

 S
ta

rt
in

g
 p

o
in

t
=

 0
m

Trace comparison

Trace 1
Trace 2
Trace 3

Figure 8.2 This figure shows three traces of the same path recorded on different days with
different air pressure. Trace points directly convert to seconds.

variants of this map where the first has the mentioned exact resolution but contains
obstacles like trees and rooftops, and the second is a 25m by 25m grid of the same
data but cleaned from obstacles.

8.1.2.1 Self Recorded Traces Evaluation

We start the evaluation with manually recorded traces as these contain exact GPS
coordinates in contrast to system-collected traces which only feature OSM nodes.
Exact GPS coordinates feature a better position accuracy as the mapping to OSM
nodes is omitted. Later, we evaluate the anonymized traces collected through our
system over a time of approximately one month. In the first two weeks of collection
we registered 10 active installations of our application.

Recording the same trace in different weather environments can yield slightly differ-
ent results for altitude differences. Using our manual recordings we show how strong
multiple measurements of the same trace differ. We consider three different traces
of the same path recorded on different days with different air pressures and show
how their air pressure values and altitude differences variate in Figure 8.2.

At the end of the traces we can see a deferral caused by different travel speed. The
common slopes around trace points 50 and 400 were caused by a gap in the GPS
recordings. We see that the general characteristics of the paths are identical besides
some minor deviations.

Figure 8.3 depicts an exemplary comparison between a barometric elevation profile,
the reference profile and geoid corrected GPS profile for a single trace. Looking at
this Figure, we have to note the following:

54 8. Evaluation

0 50 100 150 200 250 300
Trace points

190

200

210

220

230

240

A
lt

it
u
d
e
 (

m
)

Reference vs Barometric vs GPS profile comparison

Reference Altitude
Barometric Altitude
Corrected GPS Altitude

Figure 8.3 In this figure we show the reference elevation profile and our barometric profile of
the same trace. As our barometric trace only features altitude differences, we aligned it to the
reference trace such that the error between them is minimal. This figure visualizes that we
yield very accurate altitude differences using our system for this trace.

1. Our barometric altitude only consists of relative altitude differences, hence, in
Figure 8.3 we align it to the reference profile to yield a minimal error. This
way, we can directly identify the relative deviations from the reference.

2. The GPS altitude is geoid corrected but is also very erratic. In this case, the
mean error in comparison to the reference altitude is 5.05m and the maximal
error is 30.78m. If we compare the altitude differences of consecutive trace
points (first derivation) between GPS and reference profile, GPS deviates on
average 0.81m.

3. Because our barometric trace is manually aligned to the reference profile we
cannot compare the absolute altitudes. Regarding altitude differences of con-
secutive trace points (first derivation) between the barometric and reference
profile, the barometric profile deviates on average 0.12m.

To finish the evaluation of manually recorded traces, we compare barometer and
GPS based altitude differences of five traces with the reference differences in Figure
8.4. We have to remember that we compare the accuracy of altitude differences
between consecutive trace points, not the absolute altitude. This is also the reason
why GPS performs comparably well. Further, we see that the results are very similar
if compared against the exact reference map (left diagram) or the obstacle cleaned
reference map (right diagram). We finally see, that the barometer based altitude
differences of consecutive trace points have an average error of 0.19m compared to
the exact reference map, and 0.12m compared to the obstacle cleaned reference map.
GPS performs comparably bad with results of 0.88m and 0.80m.

8.1. Barometric Altitude Differences 55

1 2 3 4 5
Trace

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
A

v
e
ra

g
e
 e

rr
o
r

in
 m

Average barometric altitude difference error
Exact reference map

Mean: 0.19m

1 2 3 4 5
Trace

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
v
e
ra

g
e
 e

rr
o
r

in
 m

Average GPS altitude difference error
Exact reference map

Mean: 0.88m

1 2 3 4 5
Trace

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
v
e
ra

g
e
 e

rr
o
r

in
 m

Average barometric altitude difference error
Cleaned reference map

Mean: 0.12m

1 2 3 4 5
Trace

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
v
e
ra

g
e
 e

rr
o
r

in
 m

Average GPS altitude difference error
Cleaned reference map

Mean: 0.80m

Figure 8.4 This Figure compares five traces with the exact reference map (left side) and the
obstacle cleaned reference map (right side). For each diagram the upper part shows the average
error of altitude differences between the barometric elevation profile and the reference profile,
while the lower part shows the same for the GPS based elevation profile. The red lines depict
the average error over all traces.

The previous evaluations have all been done by comparing to the exact reference map
of the land-registry. However, this map represents an elevation profile that contains
also trees, buildings and other obstacles. Hence, this map is no representation of
the pure ground elevation. Unfortunately, this causes errors in the evaluations if the
evaluated traces pass these obstacles. For instance, inaccurate GPS measurements
can lead a trace over a building even though the user actually walks along the street
next to the building. This case also applies to our manually recorded traces. At
certain points the GPS trace overlays a building or tree such that the reference
altitude at this point is the altitude of the obstacles top. Clearly, we should not
compare this reference altitude to the one we measured by air pressure or GPS.
Ultimately, we masked our self-recorded traces such that these points are ignored
for the evaluation. As for the evaluation of all anonymously collected traces we
cannot mask them due to the following reasons:

1. The anonymous traces have considerably less trace points i.e., only the OSM
nodes.

2. The bulk of traces makes the effort of masking infeasible.

Thus, the following evaluations of our anonymously collected traces is entirely based
on the obstacle cleaned reference map with a resolution of 25m in the plane and
0.1m in altitude. We can further see from Figure 8.4 that the results from both
references are comparable.

8.1.2.2 Collected Traces Evaluation

We start our trace evaluations with on overview over all collected traces. Figure
8.5 shows all traces that have been collected by our anonymization system over the
time of one month. We collected these traces from voluntary users of our Android

56 8. Evaluation

Figure 8.5 This map shows all traces that have been collected by our anonymization system
over the time of one month.

application. We can consider this map as a directed graph where each edge holds
the altitude difference between its source and destination vertex. As done in the
GPS trace evaluations, we will compare the collected altitude differences with those
calculated from the obstacle cleaned reference elevation profile used previously.

All in all, we have a total amount of 95 valid traces out of 135 that we evaluate.
The remaining traces were either recorded using the first version of our Android
application that did not feature the wake lock that allows for proper air pressure
measurements when the application works in background and the screen is locked,
or they have not been recorded in the area of Aachen, Germany. In the latter case,
we have no reference material to compare with. Note, each of the 95 traces contains
two original traces as they have been collected with an anonymity requirement of
k=2. Table 8.1 shows a summary of our evaluation results. The evaluation process
for each trace is structured as follows:

1. Lookup the GPS coordinates for each occurring OSM node in the spatialite
database.

2. Lookup the absolute altitudes of the GPS coordinates in the reference map.

3. Calculate the reference altitude differences for neighboring nodes.

4. Compare the reference altitude differences with those from the trace.

In Figure 8.6 we show the average altitude difference error for each of the 95 traces
sorted by ascending error. We see that 25 percent of traces have an average error
below 0.70m and 75 percent are still below 1.19m. All in all, on the error averages

8.2. SMPC Based Trace Anonymization 57

No. of Traces Error Std. Dev. Min. Error Max. Error

95 0.99m 0.91m 0.09m 3.58m

Table 8.1 Summary of evaluation results for altitude differences from anonymized traces. All
values are the averages over all 95 traces.

Traces
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
v
e
ra

g
e
 e

rr
o
r

in
 m

Average altitude difference error per trace

Mean error: 0.99m
Lower quartile: 0.70m
Upper quartile: 1.19m
Mean max. error: 3.58m
Mean min. error: 0.09m

Figure 8.6 This figure gives an overview over the average altitude difference error for each
trace. We additionally see, the average minimal and maximal error over all traces. Moreover,
25 percent of the traces have an average error below 0.70m while 75 percent of the traces
have an average error below 1.19m. The error averages to 0.99m.

to 0.99m for all traces. We also calculate the minimal and maximal error for each
trace. On average these account for 0.09m and 3.58m. The collected traces have
lengths between 2 and 283 OSM nodes with an average length of 42 nodes.

Compared with our manually recorded traces, the average error is significantly
higher. The reason is found in the higher distance between trace points. Where
our GPS traces have a trace point for each second, we stated in 2 that in the OSM
path and street network a pedestrian needs on average 112,5s from one node to the
next. Hence, on average 112,5s pass while a user moves between two consecutive
nodes in the anonymized traces. As our anonymized traces do not contain GPS ele-
vations, we cannot compare our barometric altitude against those from GPS for the
95 traces. However, we have to note that in our self recorded traces GPS performed
approximately 5-8 times worse in comparison.

8.2 SMPC Based Trace Anonymization

The traces recorded by our contributors pass an anonymization process which is
realized under SMPC as explained in Chapter 5. The performance of this process
depends on the following variables:

58 8. Evaluation

EU East US West US

EU (1.202ms , 0.252ms) (76.266ms , 0.177ms) (170.091ms , 5.009ms)

East US (76.303ms , 0.301ms) (1.146ms , 0.173ms) (59.967ms , 0.364ms)

West US (169.595ms , 5.952ms) (60.006ms , 0.406ms) (1.089ms , 0.254ms)

Table 8.2 Ping-test between Amazon EC2 instances located in Ireland (EU), North Virginia
(East US) and Oregon (West US). The tuples represent mean and standard deviation over 30
echo requests. Column title is the source and row title is the destination.

1. The amount of privacy peers

2. The Paillier Threshold Encryption key size

3. The bloomfilter size

4. The length of the traces

We evaluate the system’s performance by varying one of the variables while keeping
the others fixed. Thus, we get an overview of each variables impact on the system
performance. Afterwards, we state which variable values give a practical starting
point for a productive system usage. Using these values we show how many traces
the system can handle per minute, how much communication overhead is caused,
and how much time is required for the input peers to create the shares.

8.2.1 Evaluation Environment

For our evaluations the privacy peers are set up on the smallest Amazon EC2 in-
stances featuring one virtual CPU and 1GB of system memory. The host systems all
feature Xeon E5-2670 v2 @ 2.50GHz CPUs. To give a realistic network environment
with differently behaving connections between the privacy peers, the privacy peers
are distributed over three locations worldwide i.e., Ireland (Europe), North Virginia
(East US) and Oregon (West US). The PTE key dealer and collector peer are run
together on a machine at ComSys in Aachen, Germany. As stated in Chapter 7 these
roles must be separated in a productive rollout, otherwise the untrusted trace collec-
tor is in possession of the complete Paillier Threshold Encryption key and hence is
able to reconstruct single not-anonymized traces if in collaboration with one of the
privacy peers. Finally, the evaluation of required processing time on input peers for
creating shares is performed on a late 2013 MacBook Pro with 2.4Ghz Dual-Core
Intel Core i5 processor and 8GB system memory.

We start by giving an overview over the network connectivity between the three
locations Ireland, North Virginia and Oregon, in Table 8.2. The table clearly states
that the connection between EU and West US is the most prone to delays. It has
a round trip time around 170ms in both directions and a standard deviation of 5-
6ms. The remaining connections between different locations show a delay between
60-76ms with constantly low standard deviation around 0.2-0.4ms.

8.2. SMPC Based Trace Anonymization 59

40 60 80 100 120 140 160
Bloomfilter size

0

5

10

15

20

25

30

35

40

T
im

e
 i
n
 m

s

Time Creating Shamir Shares

Trace length 5
Trace length 10
Trace length 20
Trace length 40
Trace length 80

10 20 30 40 50 60 70 80
Trace length

0

5000

10000

15000

20000

25000

T
im

e
 i
n
 m

s

Time Creating Paillier Shares

Computation time
11s for average trace length of 42

Figure 8.7 The left diagram shows how calculation time of Shamir shares behaves with in-
creasing bloomfilter size. The right diagram shows how Paillier share creation time increases
with the trace length. Here, we used a fixed key size of 2048bit for PTE.

8.2.2 Input Peer Evaluation

In Figure 8.7 we see how the computation time on the input peer behaves. As stated
in Chapter 5, the input peers firstly share the trace bloomfilters using Shamir’s Secret
Sharing and secondly share the OSM nodes and altitude differences using Paillier
Threshold Encryption. Hence, the amount of created Shamir shares depends on the
trace length - one bloomfilter for each node - and on the chosen bloomfilter size. As
depicted in Figure 8.7 on the left side, the time required for creating the Shamir
shares does not considerably differ for the chosen trace lengths and bloomfilter sizes.
Moreover, with a range between 13-26ms for Shamir computations their timely
influence is negligible. The time consumption of creating PTE shares is directly
dependent from the trace length - we encrypt every altitude difference together with
their source and destination OSM node. On the right side of Figure 8.7 we see,
the share creation time consumption in dependence to the trace length. Where the
time consumption develops linear between 1190ms for 5 node traces and 21086ms
for 80 node traces. The red line shows the time consumption of 11000ms for the
average trace length of 42 nodes stated in the first part of this chapter. Note, that
all computations are usually performed on smartphones. As the currently used Java
implementation of PTE is single-threaded and smartphone CPUs still not reach the
computation power of desktop CPUs it is likely that the computations take more
time on the smartphone. Hence, we perform the computations in a background
thread as stated in Chapter 6.

8.2.3 Privacy Peer Evaluation

We continue by evaluating the performance and scalability of our anonymization
system realized by the privacy peers. To give a first overview over the system per-
formance, we show in Figure 8.8 on the left, how the overall computation time per
privacy peer scales with trace length. For this, and the following experiments we
prepared pairs of traces where only the last node has the same ID. Thus, finding
intersections involves checking all bloomfilters for the two traces. The total compu-
tation time includes the following processes:

60 8. Evaluation

10 20 30 40 50 60 70 80
Trace length

0

5

10

15

20

25

T
im

e
 i
n
 s

e
co

n
d
s

Total computation time for share handling before trace release

3 Privacy Peers
6 Privacy Peers
9 Privacy Peers

10 20 30 40 50 60 70 80
Trace length

0

2000

4000

6000

8000

10000

12000

14000

D
a
ta

 i
n
 K

B

Data amount: Receiving, anonymizing and releasing two traces

3 Privacy Peers
6 Privacy Peers
9 Privacy Peers

Figure 8.8 The left figure shows the complete computation time in seconds per privacy peer
in dependence of trace length for 3, 6 and 9 privacy peers. On the right side, we see the traffic
caused per privacy peer depending on the trace length.

• Calculating the intersection bloomfilter of the two traces

• Checking the single nodes bloomfilters against the intersection bloomfilter

• Shuffling the PTE encrypted tuples

• Doing a partial decryption of the tuples before releasing them to the collector
peer

For each test we keep the bloomfilter size at 40 bits and the PTE key size at 2048
bits. All tests are repeated five times and the average time is taken as result. We see
in the figure that the computational effort rises almost linearly for all constellations
with 3, 6 or 9 privacy peers. Computation time starts with 2-4s for traces with
5 nodes. The test with a trace length of 10 shows an outlier as the 9 privacy peer
scenario yields a shorter time compared to the 6 privacy peer scenario. The complete
test has been repeated several times where each attempt showed such outliers for
a random trace length. As we use the smallest instances on Amazon EC2 we have
no guarantees on their constant network performance, hence, these outliers probably
originate from other load at the host systems network. Finally, we see that increasing
the number of privacy peers adds on average a constant 0.8s of computation time
per added privacy peer. Based on the numbers from this figure, we can see that our
system is able to anonymize 4-6 traces of length 40 per minute, depending on the
amount of privacy peers.

The right side of Figure 8.8 shows the amount of data traffic used at each privacy
peer during the reception, anonymization and release of two input traces. Again, we
see that network traffic increases linearly with trace length but with higher increase
for more privacy peers. As stated in Chapter 6 we decided to send numbers larger
than the usual primitives as strings. This accounts for a majority of the network
traffic. In future work, this is a point for significant improvements.

The three major time consuming actions at the privacy peers are:

• Finding intersections between contributed traces.

8.2. SMPC Based Trace Anonymization 61

10 20 30 40 50 60 70 80
Trace length

0

1

2

3

4

5

6

T
im

e
 i
n
 s

e
co

n
d
s

Required time for shuffling

3 Privacy Peers
6 Privacy Peers
9 Privacy Peers

40 80 160 320 640
Bloomfilter size in bits

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 i
n
 s

e
co

n
d
s

Intersection discovery per bloomfilter size

Figure 8.9 The left diagram depicts the average time per peer required for shuffling depending
on the trace length. The right diagram shows the average intersection time with increasing
bloomfilter size.

• Shuffling and re-randomizing the PTE encrypted altitude difference tuples.

• Performing the partial PTE decryption of these tuples before they get released
to the collector peer.

The first privacy peer action i.e., finding intersections of traces using bloomfilters,
turns out to be almost independent from the trace length and the intersection points.
We evaluate the intersection time for traces of lengths 5, 10, 20, 40 and 80 nodes.
For all lengths finding intersections took between 0.65s and 1.05s. Interestingly, the
number of privacy peers has no noticeable impact even though finding intersections
involves several distributed multiplications of Shamir shares.

Further, we show on the right side of Figure 8.9 that the intersection time generally
increases along with the bloomfilter size, but also has outliers. Reasons for outliers
are one of the following:

• The common node of the intersecting traces is one of the first nodes.

• Network delay has a higher impact on time than computation time.

While comparing single node bloomfilters of the second trace with the intersected
bloomfilter of both traces, we start with the bloomfilter of the first node. As soon
as a match is found we abort the search as we already found an intersection. Hence,
the intersection time for traces with common nodes in the beginning is short. As
the second point, Shamir share calculations are not computationally intensive. A
delay prone network setup between the privacy peers as used in our evaluation has
a higher impact on the overall intersection time compared to the pure calculations.

When two traces have been detected to have an intersection, we merge these traces
and, in order to establish unlinkability as stated in Chapter 4, we shuffle the order of
their shares. We evaluate for 3, 6 and 9 privacy peers with fixed bloomfilter size of
40 bits and fixed PTE key size of 2048 bits how the shuffling and re-randomization
process scales with the trace length. The results are shown in Figure 8.9. Shuffling

62 8. Evaluation

10 20 30 40 50 60 70 80
Trace length

0

2

4

6

8

10

12

14

16

T
im

e
 i
n
 s

e
co

n
d
s

Required time for partial decryption before trace release

3 Privacy Peers
6 Privacy Peers
9 Privacy Peers

1024 2048 4096
Keysize

0

5

10

15

20

25

30

35

40

45

T
im

e
 i
n
 s

e
co

n
d
s

Required time for partial decryption before trace release

3 Privacy Peers

Figure 8.10 On the left side we show how the time for partial decryptions for PTE encrypted
tuples behaves with trace length. On the right side we show the increase in computation time
for growing PTE key sizes where each bar shows the average decryption time over 3 privacy
peers.

does strongly depend on the network connection, hence, jitter and throughput short-
ages directly affect the shuffling time. This is also the reason for the 6 peer scenario
taking more time than the 9 peer scenario for traces of length 10. The remaining
trace length do not show this anomaly. Again, we can say that time increases linearly
with the trace length but with higher increase the more privacy peers are used.

As soon as a merged and shuffled trace reaches the anonymity requirement k, each
of the privacy peers performs a partial decryption of the PTE encrypted altitude
tuples to release the partial decryptions to the collector peer. The decryption does
not require peer interaction such that the process can be done locally. However, the
decryption time is the most significant part of the total computation time shown in
8.8. The decryption time depends on the following variables:

• The trace length

• The Paillier Threshold Encryption key size

With increasing trace length, also the number of PTE encrypted tuples increases.
We depict in Figure 8.10 for 3, 6 and 9 privacy peers how the decryption time per
peer develops for traces with 5, 10, 20, 40 and 80 nodes. The figure clearly shows
that the partial decryptions do not rely on the number of privacy peers. For all three
scenarios, the time needed for partial decryptions is almost identical and increases
linearly with the trace length.

The key size we use for PTE has an influence on the computation time needed to
de- and encrypt a single PTE value. In the diagram on the right side of Figure 8.10,
we show how the time for partial decryptions increases for a 40 node trace with
growing key size. We tested the decryption time for key sizes of 1024, 2048 and
4096 bits. The results show that while we double the PTE key size, the computation
time increases by a factor of approximately six. Including this into the total time per
merged trace from the left diagram in Figure 8.8 decreases the per minute throughput
of processed traces from 4-6 to 0-1 for a key size of 4096 bits. Hence, choosing 2048
bits is a feasible tradeoff between security and utility.

8.2. SMPC Based Trace Anonymization 63

8.2.4 Collector Peer Evaluation

Finally, we examine the collector peer. The collector peer receives the partial de-
cryptions from the privacy peers and uses them to reconstruct the secret. In our
case, the OSM node IDs and altitude differences. We evaluate the time needed to
reconstruct the tuples from two merged traces each one having a length of 5, 10, 20,
40 and 80 nodes. The chosen PTE key size is 2048 bits.

5 10 20 40 80
Trace length

0

20

40

60

80

100

T
im

e
 i
n
 m

s

Time needed by CP for share decryption

Figure 8.11 Average time needed for the collector peer to reconstruct a trace from the partial
PTE decryptions of 9 privacy peers.

Figure 8.11 states that the reconstruction of traces ranges from approximately 40ms
up to 98ms. However, the time for reconstructing traces only increases significantly
for the traces with 20 and 80 nodes. The reason is that the collector peer uses
multiple threads for the decryption. We use a machine with 16 cores and 32 threads
where one core decrypts one PTE secret. Hence, the computation time for 5 and 10
node traces is almost identical. The same holds for the 20 and 40 node traces. We can
further see, that the reconstruction of traces is much faster than the anonymization
process at the privacy peers. Hence, the trace reconstruction is not a bottleneck.

8.2.5 Evaluation Summary

In our evaluation we investigated both, the accuracy of current smartphone barome-
ters and the feasibility of a SMPC based anonymization system for trace collection.
We have shown that our measurement technique as described in Chapter 5 is feasible
to gather useful altitude differences between neighboring OSM nodes. Moreover, air
pressure based altitude differences yield a better result compared to GPS by a factor
of approximately six, see Figure 8.4. The overall accuracy for anonymized traces is
lower compared to our self recorded traces as the distance between consecutive mea-
surements is higher. OSM nodes have an average distance of approximately 125m
where consecutive GPS trace points from manual recordings account for a distance of

64 8. Evaluation

1.11m assuming a travel speed of 4 km/h. We yield an average accuracy in altitude
difference between neighboring nodes of 0.99m over 95 traces.

Regarding the SMPC based anonymization we evaluated a scenario of world wide
distributed privacy peers. According to our figures from Section 8.2 our system
properly scales with increasing trace length, where we achieve a throughput of 4 to
6 anonymized traces per minute for traces of length 40. This value can be easily
increased by assigning more CPU power and using less delay prone network connec-
tions.

9
Conclusion

In this thesis we proposed a system for crowd-sourced privacy-preserving collection
of user created elevation profiles. Therefor, we approached the problem of privacy-
preserving collection for location dependent data and the problem of creating ele-
vation profiles based on air pressure based altitude differences. The system is split
into three parts. Firstly, the Android application that gathers air pressure data for
the user’s positions. Secondly, the privacy peers that receive shares of contributed
traces and establish k-anonymity on the data under secure multi party computation
before releasing k-anonymous chunks of altitude differences. Lastly, the potentially
untrusted collector peer receives the anonymized chunks and is not able to draw
conclusions on who contributed the data (see unlinkability in Chapter 4) and who
is represented in the data (see untraceability in Chapter 4).

9.1 Evaluation Discussion

In the evaluation of air pressure based altitude differences we saw that our barometric
approach performed better compared to GPS by a factor of six for trace points with
an average distance of 1.11m. We were able to yield an average error of 0.12m
for altitude differences compared with a reference map for the region of Aachen,
Germany. This value is remarkable as the typical accuracy of the Nexus 5 barometer
is 0.12mBar according to [4]. An air pressure difference of 0.12mBar translates to an
altitude difference between 0.8m and 1m (depending on the absolute air pressure).
Hence, we can conclude that gathered air pressure values are usually more accurate
than stated by the typical accuracy in [4]. Further, for short distances between
trace points we yield an accuracy of 0.12m which is approximately 6.67 times better
than the GPS based value in the exact same scenario. Regarding the accuracy
of anonymized traces we cannot compare them against GPS as we do not collect
GPS altitude with our system. However, we notice that the accuracy of altitude
differences between neighboring OSM nodes decreases with increasing node distance.

66 9. Conclusion

Most probably, weather effects get a higher impact on the accuracy with increasing
node distance.

Further, temperature has an impact on air pressure that we did not consider in this
thesis. For instance, users taking their smartphones out of their pocket move it in a
colder environment effectively measuring lower air pressure values. Moreover, tests in
[21] show that blowers in cars account for a noticeable change in air pressure, hence,
being a further error source. Finally, we reach an accuracy of 0.99m on average
over 95 traces with an average trace length of 42 nodes. All these traces have been
collected through our anonymization system. Considering traces with 42 nodes and
an average distance of 125m between nodes the accuracy of 0.99m accounts for traces
with a length on average 2,635km. Hence, we consider the collection of air pressure
based altitude difference feasible for use in pedestrian navigation e.g., finding routes
with least elevation for wheelchair users or determining the difficulty of biking tours.

The evaluations of our SMPC based anonymization system have shown that it scales
linearly in terms of computation time with the trace length. Looking at Figure 8.8,
confirms this behavior and shows that rising amount of privacy peers adds a constant
additional computing time of approximately 0.8s per privacy peer. The additional
computation time is reasoned by the additional shuffling effort where shares have to
travel a complete round across all privacy peers. The biggest portion of the complete
computation time is accounted by the partial decryption of PTE shares before they
get released to the collector peer. However, this computation only occurs if a traces
reaches its anonymity requirement and hence gets released.

The partial decryption time consumption depends firstly on the trace length and
secondly on the PTE key size. As we can not influence the trace length, we use the
PTE key size to find a wise decision for a tradeoff between computation time and
security. As 2048 bits are considered to be sufficient also for future use, looking at
Figure 8.10 we can say that 2048 bits is a suitable tradeoff as 4096 bits increases
the computation time by a factor of 6. We further see, that the amount of privacy
peers does not have a significant influence on the decryption time as decryption is
performed locally at every privacy peer.

Using 2048 bits for PTE shares also yields a good performance for trace decryption
at the collector peer size. Depending on the trace length the decryption takes up
to 97ms for an 80 node trace. Hence, the collector peer is not the bottleneck and
allows for processing large amounts of incoming traces.

Finding a suitable value for the bloomfilter size depends on the average trace length.
Undersized bloomfilters yield false positives if they get overcrowded as stated in
Chapter 5. In Chapter 8 we found an average trace length of 42 nodes. Together
with the fact from the right diagram in Figure 8.9 which states that the bloomfilter
handling’s share on the overall computation time is negligible, we suggest to use
bloomfilters of at least 320 bits and 4 hashes per object. Thus, we are able to
process even longer traces without the danger of occurring false-positives during the
intersection detection.

Possibilities to scale the SMPC anonymization system are either the use of more
performant systems, or the deployment of multiple parallel privacy peer systems
to spread the load of contributors. Remember, that our evaluations were done on

9.2. Future Work 67

the smallest Amazon EC2 instances with least guarantees on CPU and network
performance.

9.2 Future Work

Our system is in the state of a proof of concept. As the evaluation shows it already
performs well, but there are several ideas that still need to be realized for productive
use. A list of these ideas looks as follows:

• Implement the aggregation of altitude differences.

• Improve the network communication for big integers.

• Implement a connection to OSM for direct result release.

• Implement geofencing in the Android application.

• Secure the connections between all participating peers using TLS.

• Let the user choose the anonymity requirement k.

In the current state we save all received traces. However, there is no handling
for the received data i.e., when receiving multiple information for the same pair of
OSM nodes, these are saved but not aggregated. As suggested in Chapter 5 we
recommend to implement a sliding window algorithm that calculates that average
altitude difference of the last five measurements for each pair of OSM nodes. This
way, changes in ground level get incorporated over time.

As the currently used library for serialization and deserialization does not provide
primitives for big integers, we send them as strings. This causes a majority of the
network traffic and is a good point for improvements.

As already stated, the collected traces are only stored by our proof of concept im-
plementation but do not go through further processing. As we want to contribute
the data to the public we need an implementation that connects our system with
OSM.

Even though our system establishes k-anonymity on contributed data, a users anonymiza-
tion is reasoned by intersection points. Hence, that part of the contributed trace up
to the first intersection point is not anonymized such that we can possibly see that
a user came from a certain address of travelled to this address. As a future feature
we can empower the user to determine areas on the map where no traces should be
recorded to avoid this problem.

As stated in Chapter 7, all connections must be secured in order to prevent an ad-
versary from intercepting the shares among the privacy peers. This implementation
is also considered future work.

As a last possible feature for future work, we should enable contributors to choose the
desired anonymity requirement k for their traces. This way, each user can ensure
that her contributed traces at least exhibit her desired level of anonymity before
collected by the collector peer.

68 9. Conclusion

9.3 Problem Revision

In Chapter 4 we stated a list of requirements on our system which are Anonymity,
Utility, Scalability and Coverage. In the following we show to which extent these
requirements are fulfilled:

Anonymity Our system addresses both problems user unlinkability and untrace-
ability. We to hide a traces origin and hence, to establish unlinkability, we
shuffle the contributed traces at the privacy peers. After the shuffling pro-
cess no peer can tell which part of the trace was contributed by which input
peer. Further, we establish k-anonymity on the traces by merging those traces
that intersect with each other before they get released to the collector peer.
Ultimately, both problems get solved by our system.

Utility We must ensure that anonymized data still contains all necessary data to
fulfill the use case of creating elevation profiles. The only loss of precision
occurs with the discretization of GPS traces to OSM nodes. However, as we
want to calculate the altitude differences between OSM nodes, the data has
exactly those information that we need i.e., a pair of nodes and the altitude
difference between them.

Scalability As shown in Chapter 8 the SMPC trace anonymization scales linearly
with the trace length. Adding more privacy peers only adds a constant value
to the computation time. As we can process between 4 and 6 traces per minute
on the smallest instances on Amazon EC2 we can increase this value by using
stronger instances. However, assuming several thousand contributors probably
requires some speed optimizations. Data collection via our Android application
is performed totally independent. Hence, also the process of collecting data
easily scales with the number of users. We have further shown, that also the
collector peer computations scale linearly with rising trace length.

Coverage We achieve an easy system deployment by using an Android application
as input peer to our system. This way, everyone having an Android smartphone
with barometer can join and contribute to the system.

Bibliography

[1] Online Resource. https://www.openstreetmap.org, accessed 2014-08-22.

[2] Online Resource. https://en.wikipedia.org/wiki/Altimeter, accessed
2014-09-02.

[3] Online Resource. https://www.gaia-gis.it/fossil/libspatialite/index,
accessed 2014-09-10.

[4] Online Resource. http://www.bosch-sensortec.com/en/homepage/

products_3/environmental_sensors_1/bmp280/bmp280, accessed 2014-
09-18.

[5] Beresford, A. R., and Stajano, F. Location privacy in pervasive com-
puting. Pervasive Computing, IEEE 2, 1 (2003), 46–55.

[6] Brickell, J., and Shmatikov, V. Efficient anonymity-preserving data col-
lection. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining (2006), ACM, pp. 76–85.

[7] Burkhart, M., Strasser, M., Many, D., and Dimitropoulos, X.
Sepia: Privacy-preserving aggregation of multi-domain network events and
statistics. Network 1 (2010), 101101.

[8] Community, O. Osm altitude information. Online Resource. http://wiki.

openstreetmap.org/wiki/DE:Altitude, accessed 2014-07-28.

[9] Cramer, R., Damg̊ard, I., and Maurer, U. General secure multi-
party computation from any linear secret-sharing scheme. In Advances in
Cryptology—EUROCRYPT 2000 (2000), Springer, pp. 316–334.

[10] Diverse. Barometric altitude formula. Online Resource. https://de.

wikipedia.org/wiki/Barometrische_Höhenformel, accessed 2014-07-30.

[11] Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hens-
ley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., et al.
The shuttle radar topography mission. Reviews of geophysics 45, 2 (2007).

[12] Fung, B., Wang, K., Chen, R., and Yu, P. S. Privacy-preserving data
publishing: A survey of recent developments. ACM Computing Surveys (CSUR)
42, 4 (2010), 14.

https://www.openstreetmap.org
https://en.wikipedia.org/wiki/Altimeter
https://www.gaia-gis.it/fossil/libspatialite/index
http://www.bosch-sensortec.com/en/homepage/products_3/environmental_sensors_1/bmp280/bmp280
http://www.bosch-sensortec.com/en/homepage/products_3/environmental_sensors_1/bmp280/bmp280
http://wiki.openstreetmap.org/wiki/DE:Altitude
http://wiki.openstreetmap.org/wiki/DE:Altitude
https://de.wikipedia.org/wiki/Barometrische_H�henformel
https://de.wikipedia.org/wiki/Barometrische_H�henformel

70 Bibliography

[13] Graham, M. Gps versus barometric altitude the definitive
answer. Online Resource. http://www.xcmag.com/2011/07/

gps-versus-barometric-altitude-the-definitive-answer/, accessed
2014-07-30.

[14] Gruteser, M., and Grunwald, D. Anonymous usage of location-based
services through spatial and temporal cloaking. In Proceedings of the 1st inter-
national conference on Mobile systems, applications and services (2003), ACM,
pp. 31–42.

[15] Gruteser, M., and Hoh, B. On the anonymity of periodic location samples.
In Security in Pervasive Computing. Springer, 2005, pp. 179–192.

[16] Hoh, B., Gruteser, M., Xiong, H., and Alrabady, A. Achieving guar-
anteed anonymity in gps traces via uncertainty-aware path cloaking. Mobile
Computing, IEEE Transactions on 9, 8 (2010), 1089–1107.

[17] Lindell, Y., and Pinkas, B. Secure multiparty computation for privacy-
preserving data mining. Journal of Privacy and Confidentiality 1, 1 (2009),
5.

[18] Nave, C. R. Barometric altitude formula. Online Resource. http:

//hyperphysics.phy-astr.gsu.edu/hbase/kinetic/barfor.html, accessed
2014-07-30.

[19] Paillier, P. Public-key cryptosystems based on composite degree residu-
osity classes. In Advances in cryptology—EUROCRYPT’99 (1999), Springer,
pp. 223–238.

[20] Paillier, P. Paillier encryption and signature schemes. In Encyclopedia of
Cryptography and Security. Springer, 2011, pp. 902–903.

[21] Parviainen, J., Kantola, J., and Collin, J. Differential barometry in
personal navigation. In Position, Location and Navigation Symposium, 2008
IEEE/ION (2008), IEEE, pp. 148–152.

[22] Shamir, A. How to share a secret. Communications of the ACM 22, 11 (1979),
612–613.

[23] Silverman, R. Has the rsa algorithm been compromised as a result of bern-
stein’s paper? RSA Laboratories, April 8 (2002).

[24] Sweeney, L. k-anonymity: A model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 05 (2002),
557–570.

[25] Zhenhai, H., and Shengguo, H. Development of high precision barometric
altimeter [j]. Journal of Nanjing University of Aeronautics & Astronautics 1
(2009), 028.

[26] Zhu, W., Dong, Y., Wang, G., Qiao, Z., and Gao, F. High-precision
barometric altitude measurement method and technology. In Information
and Automation (ICIA), 2013 IEEE International Conference on (Aug 2013),
pp. 430–435.

http://www.xcmag.com/2011/07/gps-versus-barometric-altitude-the-definitive-answer/
http://www.xcmag.com/2011/07/gps-versus-barometric-altitude-the-definitive-answer/
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/barfor.html
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/barfor.html

	Contents
	1 Introduction
	2 Background
	2.1 OpenStreetMap
	2.2 Barometric Altitude
	2.3 Android
	2.4 k-Anonymity
	2.5 Secure Multi Party Computation
	2.5.1 Shamir's Secret Sharing
	2.5.2 Paillier Threshold Encryption

	2.6 Bloomfilters

	3 Related Work
	3.1 Privacy-Preserving Data Collection
	3.1.1 Data Source Unlinkability
	3.1.2 Data Content Untraceability

	3.2 Barometric Altitude

	4 Problem Statement
	4.1 System Requirements
	4.2 Adversary Model

	5 System Design
	5.1 Privacy-Preserving Data Collection
	5.1.1 Data Collection and Preparation
	5.1.2 Data Anonymization
	5.1.3 Data Collection

	5.2 Extracting Altitude Differences from Air Pressure Traces

	6 Implementation
	6.1 Android Application
	6.1.1 Application GUI
	6.1.2 Application Backend
	6.1.3 Communication between GUI and Backend
	6.1.4 SMPC and Communication

	6.2 Privacy Peers
	6.3 Collector Peer

	7 Security Discussion
	8 Evaluation
	8.1 Barometric Altitude Differences
	8.1.1 Feasibility
	8.1.2 Accuracy
	8.1.2.1 Self Recorded Traces Evaluation
	8.1.2.2 Collected Traces Evaluation

	8.2 SMPC Based Trace Anonymization
	8.2.1 Evaluation Environment
	8.2.2 Input Peer Evaluation
	8.2.3 Privacy Peer Evaluation
	8.2.4 Collector Peer Evaluation
	8.2.5 Evaluation Summary

	9 Conclusion
	9.1 Evaluation Discussion
	9.2 Future Work
	9.3 Problem Revision

	Bibliography

